UPSC Civil Services Main 1979 - Mathematics Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Define the centre of a group and show that a group of prime power has a non-trivial centre. Hence or otherwise prove that a group of order p^2 is abelian for every prime p.

Solution. See theorem 2.11.2 Page 86 of Algebra by Herstein. See also the corollary to the theorem.

Question 1(b) Show that any two cyclic groups of the same order are isomorphic.

- **Solution.** Let G_1 and G_2 be two cyclic groups, $G_1 = \langle a \rangle$, $G_2 = \langle b \rangle$. **Case 1.** G_1 and G_2 are of infinite order. Define $T : G_1 \longrightarrow G_2$ by $T(a^r) = b^r$.
 - 1. T is a homomorphism. Let $\alpha, \beta \in G_1$, then $\alpha = a^r, \beta = a^s$ for some $r, s \in \mathbb{Z}$. $T(\alpha\beta) = T(a^{r+s}) = b^{r+s} = b^r b^s = T(\alpha)T(\beta).$
 - 2. T is one-one. $\alpha \neq \beta \Rightarrow r \neq s \Rightarrow T(\alpha) \neq T(\beta)$.
 - 3. T is onto is obvious.

Thus $G_1 \simeq G_2$.

Case 2. $\operatorname{ord}(G_1) = \operatorname{ord}(G_2) = n$. Again define $T(a^r) = b^r$. Let $\alpha, \beta \in G_1 \Rightarrow \alpha = a^r, \beta = a^s \Rightarrow T(\alpha\beta) = T(a^{r+s})$. If $r + s \equiv t \mod n$, then $T(\alpha\beta) = T(a^t) = b^t = b^{r+s} = T(\alpha)T(\beta)$, so T is a homomorphism. If $\alpha \neq \beta$, then $r \not\equiv s \mod n$, therefore $T(\alpha) \neq T(\beta)$. T is onto is obvious, so $G_1 \simeq G_2$.

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @2012. **Question 1(c)** If \mathbb{Q} is the field of rational numbers, prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$, where $\mathbb{Q}(a_1, a_2)$ is the smallest subfield of the real field containing \mathbb{Q}, a_1, a_2 .

Solution. Clearly $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \supseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$. We shall prove that the degree of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} = degree of $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = 4 \Rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Let $x = \sqrt{2} + \sqrt{3}$ so that $x - \sqrt{2} = \sqrt{3}$. Squaring both sides, we get $x^2 - 2\sqrt{2}x + 2 = 3 \Rightarrow x^2 - 1 = 2\sqrt{2}x \Rightarrow x^4 - 2x^2 + 1 = 8x^2 \Rightarrow x^4 - 10x^2 + 1 = 0$. Now $x^4 - 10x^2 + 1$ is irreducible over \mathbb{Q} — it has no rational roots, as ± 1 are not roots of the polynomial. Another way to see this is to observe that $t^2 - 10t + 1$ has no rational roots, so is irreducible. Thus $(\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}) = 4$.

Now $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, because if $\sqrt{3} = a + b\sqrt{2}, a, b \in \mathbb{Q}$, then $3 = a^2 + 2\sqrt{2}ab + 2b^2$, which would imply that $\sqrt{2} \in \mathbb{Q}$. Thus $(\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2}) = 2 \Rightarrow (\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}) = 4$.