UPSC Civil Services Main 1981 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let $f: X \longrightarrow Y$ be a bijective mapping and let $A \subseteq X, B \subseteq X$, show that $f(A \cap B) \subseteq f(A) \cap f(B)$ and $f(A \cup B)=f(A) \cup f(B)$. Examine whether $f^{-1}(A \cap B)$ is properly contained in $f^{-1}(A) \cap f^{-1}(B)$.

Solution.

$$
\begin{aligned}
A \cap B \subseteq A & \Rightarrow f(A \cap B) \subseteq f(A) \\
A \cap B \subseteq B & \Rightarrow f(A \cap B) \subseteq f(B) \\
& \Rightarrow f(A \cap B) \subseteq f(A) \cap f(B) \\
A \subseteq A \cup B & \Rightarrow f(A) \subseteq f(A \cup B) \\
B \subseteq A \cup B & \Rightarrow f(B) \subseteq f(A \cup B) \\
& \Rightarrow f(A) \cup f(B) \subseteq f(A \cup B)
\end{aligned}
$$

Conversely, let $y \in f(A \cup B) \Rightarrow \exists x \in A \cup B \cdot f(x)=y \Rightarrow x \in A$ or $x \in B \Rightarrow f(x) \in$ $f(A)$ or $f(x) \in f(B) \Rightarrow f(x) \in f(A) \cup f(B)$. This shows that $f(A \cup B) \subseteq f(A) \cup f(B)$, hence $f(A \cup B)=f(A) \cup f(B)$.
$f^{-1}(A \cap B)$ is not properly contained in $f^{-1}(A) \cap f^{-1}(B)$, as $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$. $x \in f^{-1}(A) \cap f^{-1}(B) \Rightarrow f(x) \in A, f(x) \in B \Rightarrow f(x) \in A \cap B \Rightarrow x \in f^{-1}(A \cap B)$.

Conversely $x \in f^{-1}(A \cap B) \Rightarrow f(x) \in A \cap B \Rightarrow f(x) \in A, f(x) \in B \Rightarrow x \in f^{-1}(A), x \in$ $f^{-1}(B) \Rightarrow x \in f^{-1}(A) \cap f^{-1}(B)$.

Thus the two sides are contained in each other, hence must be equal.

For more information log on brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(b) Define a binary relation on a set A. Give examples of relations which are

1. reflexive, symmetric but not transitive.
2. reflexive, transitive but not symmetric.
3. symmetric, transitive but not reflexive.

Solution.

1. Reflexive, symmetric but not transitive. $A=\{a, b, c\}$, and $R=\{(a, a),(b, b),(c, c),(a, b)$, $(b, c),(b, a),(c, b)\}$.
2. reflexive, transitive but not symmetric. $A=\{a, b, c\}$, and $R=\{(a, a),(b, b),(c, c),(a, b)$, $(b, c),(a, c)\}$.
3. symmetric, transitive but not reflexive. $A=\{a\}, R=\emptyset$. Note that if $(x, y) \in R$, then by symmetry $(y, x) \in R$, and then by transitivity $(x, x) \in R,(y, y) \in R$. Hence for any element $a \in A,(a, a) \notin R \Rightarrow(a, b) \notin R,(b, a) \notin R$ for all $b \in A$.

Question 2(a) Examine whether the set of rational numbers $\left\{\left.\frac{1+2 m}{1+2 n} \right\rvert\, m, n \in \mathbb{Z}\right\}$ forms a group under multiplication.

Solution. Let G be the set under consideration.
Note that the set of non-zero rational numbers forms a group under multiplication. To prove that G is its subgroup, all we need to show is that given $x, y \in G, x^{-1} y \in G$. Let $y=$ $\frac{1+2 m}{1+2 n}, x=\frac{1+2 q}{1+2 p}$, then $x^{-1} y=\frac{1+2(p+m+2 m p)}{1+2(q+n+2 q n)} . x^{-1} y \in G$ because $m+p+2 m p, q+n+2 q n \in \mathbb{Z}$. Thus G is a group.

Question 2(b) Show that the set of matrices

$$
\left\{\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right),\left(\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right)\right\}
$$

is a group under multiplication. Examine whether it has any proper subgroup.
Solution. Let $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), A_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), A_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), A_{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), A_{5}=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), A_{6}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), A_{7}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), A_{8}=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$. These are all the elements of the given set G.

1. A_{1} is the identity element of G.

For more information \log on brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.
2. G is closed w.r.t. multiplication, as shown in the following table.

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}
A_{1}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}
A_{2}	A_{2}	A_{1}	A_{4}	A_{3}	A_{6}	A_{5}	A_{8}	A_{7}
A_{3}	A_{3}	A_{4}	A_{1}	A_{2}	A_{7}	A_{8}	A_{5}	A_{6}
A_{4}	A_{4}	A_{3}	A_{2}	A_{1}	A_{8}	A_{7}	A_{6}	A_{5}
A_{5}	A_{5}	A_{7}	A_{6}	A_{8}	A_{1}	A_{3}	A_{2}	A_{4}
A_{6}	A_{6}	A_{8}	A_{5}	A_{7}	A_{2}	A_{4}	A_{1}	A_{3}
A_{7}	A_{7}	A_{5}	A_{8}	A_{6}	A_{3}	A_{1}	A_{4}	A_{2}
A_{8}	A_{8}	A_{6}	A_{7}	A_{5}	A_{4}	A_{2}	A_{3}	A_{1}

3. Every element of G is invertible.
4. Multiplication is associative, as it is associative for all matrices.

Thus G is a group. It has several proper subgroups - $\left\{A_{1}\right\},\left\{A_{1}, A_{2}\right\},\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, as is clear from the above table.

For more information \log on brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

