UPSC Civil Services Main 1982 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Write if each of the following statements is true or false.

1. If $*$ is any binary operation on any set S, then $a * a=a$ for all $a \in S$.
2. If $*$ is any commutative binary operation on any set S, then $a *(b * c)=(b * c) * a$.
3. If $*$ is any associative binary operation on any set S, then $a *(b * c)=(b * c) * a$.
4. Every binary operation defined on a set having exactly one element is both commutative and associative.
5. A binary operation on a set S assigns at least one element to each ordered pair of elements of S.
6. A binary operation on a set S assigns at most one element to each ordered pair of elements of S.
7. A binary operation on a set S may associate more than one element to some ordered pair of elements of S.
8. A binary operation on a set S may assign exactly one element to each ordered pair of elements of S.

Solution.

1. If $*$ is any binary operation on any set S, then $a * a=a$ for all $a \in S$.

False. Take $S=\mathbb{Z}, *=+, 2+2 \neq 2$.
2. If $*$ is any commutative binary operation on any set S, then $a *(b * c)=(b * c) * a$.

True.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.
3. If $*$ is any associative binary operation on any set S, then $a *(b * c)=(b * c) * a$.

False. Take $S=2 \times 2$ matrices, $*=$ multiplication. Let $a=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), c=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $a *(b * c)=a,(b * c) * a=b \neq a$.
4. Every binary operation defined on a set having exactly one element is both commutative and associative.

True.

5. A binary operation on a set S assigns at least one element to each ordered pair of elements of S.
True, since a binary operation assigns exactly one element to each ordered pair.
6. A binary operation on a set S assigns at most one element to each ordered pair of elements of S.
True, same reason as above.
7. A binary operation on a set S may associate more than one element to some ordered pair of elements of S.

False.

8. A binary operation on a set S may assign exactly one element to each ordered pair of elements of S.

True.

Question 1(b) Show that N is a normal subgroup of G if and only if $\forall g \in G . g N g^{-1}=N$. Does it imply that if N is a normal subgroup, then $\forall n \in N . \forall g \in G \cdot g^{-1} n g=n$? Give an example.
Solution. For the first part see Lemma 2.6.1, Page 50 of Algebra by Herstein.
The second statement is false. Let $G=S_{3}$, the symmetric group on 3 symbols. Let $N=\{$ Identity permutation, (123), (132) $\}$, then $[G: N]=$ Index of N in $G=2$, so N is normal in G.

Clearly $(123)(12)=(13)$ and $(12)(123)=(23)$. Thus $(12)^{-1}(123)(12)=(12)(123)(12)=$ $(132) \neq(123)$.

Question 1(c) Let ϕ be a homomorphism of a group G into G with kernel K. Show that $G \phi=\phi(G)$ is a group and there is an isomorphism of $G \phi$ with G / K.

Solution. $\phi(e)=e \Rightarrow \phi(G) \neq \emptyset$. Let $y_{1}, y_{2} \in \phi(G)$. Then there exist $x_{1}, x_{2} \in G, \phi\left(x_{1}\right)=$ $y_{1}, \phi\left(x_{2}\right)=y_{2}$. Thus $\phi\left(x_{1}^{-1} x_{2}\right)=\phi\left(x_{1}\right)^{-1} \phi\left(x_{2}\right)=y_{1}^{-1} y_{2} \in \phi(G)$. Hence $\phi(G)$ is a subgroup of G, so is a group.

See Question 1(a) year 1985 for the second part.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(d) Let I be an ideal in a ring R and let the coset of the element $x \in R$ be defined by $x+I=\{x+i \mid i \in I\}$. Then the distinct cosets form a partition of R, and if addition and multiplication are defined by $(x+I)+(y+I)=x+y+I,(x+I)(y+I)=x y+I$, then the cosets constitute a ring R / I in which the 0 element is $0+I$ and the inverse of $x+I$ is $(-x)+I$.

Solution. We first show that $x+I=y+I$ if $x-y \in I$ and $x+I \cap y+I=\emptyset$ if $x-y \notin I$.
Let $j=x-y \in I$. Let $t \in x+I$. Then $t=x+i, i \in I . t=x+i=y+i-j \in y+I$ because $i-j \in I$, so $x+I \subseteq y+I$. Since $x-y \in I \Rightarrow y-x \in I \Rightarrow y+I \subseteq x+I$, hence $x+I=y+I$.

Conversely if $t \in(x+I) \cap(y+I)$, then $t=x+i=y+j \Rightarrow x-y=j-i \in I$. Hence if $x-y \notin I$, then $x+I \cap y+I=\emptyset$. Note that $z \in z+I$ as $0 \in I$. So the cosets form a partition of R.

1. $0+I=I \in R / I \Rightarrow R / I \neq \emptyset . R / I$ is clearly closed for addition. Note that addition is well-defined i.e. if $x+I=x_{1}+I, y+I=y_{1}+I \Rightarrow x+y+I=x_{1}+y_{1}+I$.
2. $(x+I)+(0+I)=(x+0)+I=x+I=(0+I)+(x+I)$ for every $x \in R$, so $0+I$ is the additive identity of R / I.
3. $(x+I)+(-x+I)=(x+(-x))+I=0+I=(-x+I)+(x+I)$ so every element in R / I has an additive inverse.
4. Addition is associative and commutative, follows from the fact that this is so in R.
5. R / I is closed for multiplication. Note that multiplication is well defined - if $x+I=$ $x_{1}+I, y+I=y_{1}+I \Rightarrow x y+I=x_{1} y_{1}+I$, because $x=x_{1}+i, y=y_{1}+j, i, j \in I$, so $x y=\left(x_{1}+i\right)\left(y_{1}+j\right)=x_{1} y_{1}+x_{1} j+y_{1} i+i j \Rightarrow x y-x_{1} y_{1} \in I$ because $x_{1} j+y_{1} i+i j \in I$.
6. $(x+I)[(y+I)+(z+I)]=(x+I)(y+I)+(x+I)(z+I)$ as $x(y+z)=x y+x z$.

Thus R / I is a ring as desired.

