UPSC Civil Services Main 1982 - Mathematics Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Write if each of the following statements is true or false.

- 1. If * is any binary operation on any set S, then a * a = a for all $a \in S$.
- 2. If * is any commutative binary operation on any set S, then a * (b * c) = (b * c) * a.
- 3. If * is any associative binary operation on any set S, then a * (b * c) = (b * c) * a.
- 4. Every binary operation defined on a set having exactly one element is both commutative and associative.
- 5. A binary operation on a set S assigns at least one element to each ordered pair of elements of S.
- 6. A binary operation on a set S assigns at most one element to each ordered pair of elements of S.
- 7. A binary operation on a set S may associate more than one element to some ordered pair of elements of S.
- 8. A binary operation on a set S may assign exactly one element to each ordered pair of elements of S.

Solution.

- 1. If * is any binary operation on any set S, then a * a = a for all $a \in S$. False. Take $S = \mathbb{Z}, * = +, 2 + 2 \neq 2$.
- 2. If * is any commutative binary operation on any set S, then a * (b * c) = (b * c) * a. True.

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012. 3. If * is any associative binary operation on any set S, then a * (b * c) = (b * c) * a.

False. Take $S = 2 \times 2$ matrices, * = multiplication. Let $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then a * (b * c) = a, $(b * c) * a = b \neq a$.

4. Every binary operation defined on a set having exactly one element is both commutative and associative.

True.

5. A binary operation on a set S assigns at least one element to each ordered pair of elements of S.

True, since a binary operation assigns exactly one element to each ordered pair.

6. A binary operation on a set S assigns at most one element to each ordered pair of elements of S.

True, same reason as above.

7. A binary operation on a set S may associate more than one element to some ordered pair of elements of S.

False.

8. A binary operation on a set S may assign exactly one element to each ordered pair of elements of S.

True.

Question 1(b) Show that N is a normal subgroup of G if and only if $\forall g \in G$. $gNg^{-1} = N$. Does it imply that if N is a normal subgroup, then $\forall n \in N. \forall g \in G. g^{-1}ng = n$? Give an example.

Solution. For the first part see Lemma 2.6.1, Page 50 of Algebra by Herstein.

The second statement is false. Let $G = S_3$, the symmetric group on 3 symbols. Let $N = \{\text{Identity permutation}, (123), (132)\}$, then [G : N] = Index of N in G = 2, so N is normal in G.

Clearly (123)(12) = (13) and (12)(123) = (23). Thus $(12)^{-1}(123)(12) = (12)(123)(12) = (132) \neq (123)$.

Question 1(c) Let ϕ be a homomorphism of a group G into G with kernel K. Show that $G\phi = \phi(G)$ is a group and there is an isomorphism of $G\phi$ with G/K.

Solution. $\phi(e) = e \Rightarrow \phi(G) \neq \emptyset$. Let $y_1, y_2 \in \phi(G)$. Then there exist $x_1, x_2 \in G, \phi(x_1) = y_1, \phi(x_2) = y_2$. Thus $\phi(x_1^{-1}x_2) = \phi(x_1)^{-1}\phi(x_2) = y_1^{-1}y_2 \in \phi(G)$. Hence $\phi(G)$ is a subgroup of G, so is a group.

See Question 1(a) year 1985 for the second part.

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

Question 1(d) Let I be an ideal in a ring R and let the coset of the element $x \in R$ be defined by $x + I = \{x + i \mid i \in I\}$. Then the distinct cosets form a partition of R, and if addition and multiplication are defined by (x+I)+(y+I) = x+y+I, (x+I)(y+I) = xy+I, then the cosets constitute a ring R/I in which the 0 element is 0+I and the inverse of x+I is (-x)+I.

Solution. We first show that x + I = y + I if $x - y \in I$ and $x + I \cap y + I = \emptyset$ if $x - y \notin I$. Let $j = x - y \in I$. Let $t \in x + I$. Then $t = x + i, i \in I$. $t = x + i = y + i - j \in y + I$ because $i - j \in I$, so $x + I \subseteq y + I$. Since $x - y \in I \Rightarrow y - x \in I \Rightarrow y + I \subseteq x + I$, hence x + I = y + I.

Conversely if $t \in (x + I) \cap (y + I)$, then $t = x + i = y + j \Rightarrow x - y = j - i \in I$. Hence if $x - y \notin I$, then $x + I \cap y + I = \emptyset$. Note that $z \in z + I$ as $0 \in I$. So the cosets form a partition of R.

- 1. $0 + I = I \in R/I \Rightarrow R/I \neq \emptyset$. R/I is clearly closed for addition. Note that addition is well-defined i.e. if $x + I = x_1 + I$, $y + I = y_1 + I \Rightarrow x + y + I = x_1 + y_1 + I$.
- 2. (x+I) + (0+I) = (x+0) + I = x + I = (0+I) + (x+I) for every $x \in R$, so 0+I is the additive identity of R/I.
- 3. (x+I) + (-x+I) = (x+(-x)) + I = 0 + I = (-x+I) + (x+I) so every element in R/I has an additive inverse.
- 4. Addition is associative and commutative, follows from the fact that this is so in R.
- 5. R/I is closed for multiplication. Note that multiplication is well defined if $x + I = x_1 + I$, $y + I = y_1 + I \Rightarrow xy + I = x_1y_1 + I$, because $x = x_1 + i$, $y = y_1 + j$, $i, j \in I$, so $xy = (x_1+i)(y_1+j) = x_1y_1 + x_1j + y_1i + ij \Rightarrow xy x_1y_1 \in I$ because $x_1j + y_1i + ij \in I$.

6.
$$(x+I)[(y+I) + (z+I)] = (x+I)(y+I) + (x+I)(z+I)$$
 as $x(y+z) = xy + xz$.

Thus R/I is a ring as desired.