UPSC Civil Services Main 1983 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Show that the set $I \times I$ of integers is a commutative ring with unity with respect to addition and multiplication defined as under:

$$
\begin{aligned}
(a, b)+(c, d) & =(a+c, b+d) \\
(a, b)(c, d) & =(a c, b d)
\end{aligned}
$$

Solution. Let $(a, b),(c, d),(e, f)$ be any elements of $I \times I$.

1. Clearly $I \times I$ is closed with respect to the addition operation.
2. $(0,0)+(a, b)=(a, b)+(0,0)=(a, b)$. Thus $(0,0)$ is the additive identity of $I \times I$.
3. $(a, b)+(-a,-b)=(0,0)=(-a,-b)+(a, b)$, thus every element has an additive inverse.
4. $(a, b)+(c, d)=(a+c, b+d)=(c, d)+(a, b)$.
5. $[(a, b)+(c, d)]+(e, f)=(a+c+e, b+d+f)=(a, b)+[(c, d)+(e, f)]$. Thus $I \times I$ is an additive abelian group.
6. Clearly $I \times I$ is closed with respect to the multiplication operation.
7. $[(a, b)+(c, d)](e, f)=(a e+c e, b f+c f)=(a, b)(c, d)+(a, b)(e, f)$.
8. $(a, b)(c, d)=(a c, b d)=(c a, d b)=(c, d)(a, b)$.
9. $(1,1)(a, b)=(a, b)=(a, b)(1,1)$.

Thus $I \times I$ is a commutative ring with unity.

Question 1(b) Prove that the relation of isomorphism on the collection of groups is an equivalence relation.

Solution. See 1985 Question 1(c)(4).
Question 1(c) Prove that a polynomial domain $K[x]$ over a field K is a principal ideal domain.

Solution. Let A be an ideal of $K[x], A \neq\langle 0\rangle, A \neq K[x]$. Let $f(x)$ be a polynomial of the smallest degree in $A-\{0\}$. Then $f(x)$ is a generator of A, proved as follows: if $g(x) \neq 0$ be any element of A. If $f(x)$ does not divide $g(x)$, then since $K[x]$ is a Euclidean domain (proof below), there exist polynomials $q(x)$ and $r(x)$ in $K[x]$ such that $g(x)=f(x) q(x)+r(x)$, where $\operatorname{deg}(r(x))<\operatorname{deg}(f(x))$. Since $g(x), f(x) \in A$ and A is an ideal, it follows that $r(x)=g(x)-f(x) q(x) \in A$, which contradicts the fact that $f(x)$ has smallest degree in A. Thus any element of A is divisible by $f(x) \Rightarrow A=\langle f(x)\rangle$, the ideal generated by $f(x)$ (note that $0=f(x) 0)$.

Proof of the fact that $K[x]$ is a Euclidean domain. The Euclidean function $d: K[x]-$ $\{0\} \longrightarrow \mathbb{Z}$ is the degree of a polynomial.

1. $d(f(x)) \geq 0$ for every $f(x) \in K[x]-\{0\}$.
2. $d(f(x)) \leq d(f(x) g(x))$ for any $f(x) \neq 0, g(x) \neq 0$.
3. Given $g(x)$ and $f(x) \neq 0$, we show that there exist $q(x), r(x)$ such that $g(x)=$ $q(x) f(x)+r(x)$ where $r(x)=0$ or $d(r(x))<d(f(x))$. The proof is by induction on the degree n of $g(x)$. If $n<d(f(x))=m$, then $q(x)=0, r(x)=g(x)$. Suppose the result holds for all polynomials of degree $<n$. Let $g(x)=\sum_{i=0}^{n} b_{i} x^{i}, b_{n} \neq 0$ and $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$. Let $h(x)=g(x)-\left(b_{n} / a_{m}\right) x^{n-m} f(x)$. Then degree of $h(x)<n$, and therefore there exist $q_{1}(x)$ and $r(x)$ such that $h(x)=q_{1}(x) f(x)+r(x)$ where $r(x)=0$ or $d(r(x))<m$. Hence $g(x)=\left(q_{1}(x)+\left(b_{n} / a_{m}\right) x^{n-m}\right) f(x)+r(x)$.

Thus $K[x]$ is a Euclidean domain.

