UPSC Civil Services Main 1984 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Prove that a non-void subset S of a ring R is a subring of R if an only if $a-b \in S$ and $a b \in S$ for all $a, b \in S$.

Solution. Let $a, b \in S$.

- $a-a=0 \in S, 0-b \in S$, and therefore $a-(-b)=a+b \in S$, so S is closed w.r.t. addition.
- $a+b=b+a$ as this is true in R also.
- $0 \in S$.
- We have seen $a \in S \Rightarrow-a \in S$, and $a+(-a)=0=(-a)+a$.
- + is associative, as it is so in R. Thus S is an additive subgroup.
- $a b \in S$, given.
- Multiplication distributes over addition in S, as it does so in R.

Thus if the given requirements are satisfied, S is a subring of R. Conversely, if S is a subring of R, then $a, b \in S \Rightarrow a b \in S,-b \in S \Rightarrow a+(-b) \in S \Rightarrow a-b \in S$.

Question 1(b) Prove that an integral domain can be imbedded in a field.
Solution. See Theorem 3.6.1 Page 140 of Algebra by Herstein.

Question 1(c) Prove that for any two ideals A and B of a ring R, the product $A B$ is an ideal of R.

Solution. Note first that $A B=\left\{\sum_{i \in F} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B, F\right.$ finite $\}$.
$A B$ is a subring of R. If $x \in A B, y \in A B$, then $x=\sum_{i \in F} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B, F$ finite and $y=\sum_{i \in G} c_{i} d_{i} \mid c_{i} \in A, d_{i} \in B, G$ finite. Clearly

$$
\begin{aligned}
x-y & =\sum_{i \in F} a_{i} b_{i}+\sum_{i \in G} c_{i} d_{i} \in A B \\
x y & =\left(\sum_{i \in F} a_{i} b_{i}\right)\left(\sum_{i \in G} c_{i} d_{i}\right)=\sum_{i \in H} x_{i} y_{i} \text { where } x_{i} \in A, y_{i} \in B
\end{aligned}
$$

Note that $a_{i} b_{i} c_{j} d_{j}=a_{i}\left(b_{i} c_{j}\right) d_{j}$, and $a_{i}\left(b_{i} c_{j}\right) \in A$ as A is an ideal, $c_{j} \in A, b_{i} \in R \Rightarrow b_{i} c_{j} \in A$. Thus $x y$ can be expressed as above.

For any $r \in R, x r=\sum_{i \in F} a_{i}\left(b_{i} r\right)=\sum_{i \in F} a_{i} b_{i}^{\prime}, b_{i}^{\prime} \in B$ as B is an ideal. So $x r \in A B$. Similarly $r x \in A B$. Thus $A B$ is an ideal.

