UPSC Civil Services Main 1985 - Mathematics Algebra

Brij Bhooshan
Asst. Professor

B.S.A. College of Engg \& Technology

Mathura

Question 1(a) State and prove the fundamental theorem of homomorphisms of groups.
Solution. Theorem. Let f be a homomorphism from a group G onto a group G^{\prime} with kernel N. Then N is a normal subgroup of G, and G / N is isomorphic to G^{\prime}.

Proof: $N=\left\{x \mid x \in G, f(x)=e^{\prime}\right\}$, where e^{\prime} is the identity of G^{\prime}. Clearly $N \neq \emptyset$, as $e \in N$. If $x, y \in N$, then $f(x)=e^{\prime}, f(y)=e^{\prime}$, so $f\left(x y^{-1}\right)=f(x) f(y)^{-1}=e^{\prime} \Rightarrow x y^{-1} \in N \Rightarrow$ N is a subgroup of G.

Now let $g \in N$, then for any $x \in G, f\left(x g x^{-1}\right)=f(x) e^{\prime} f(x)^{-1}=e^{\prime} \Rightarrow x g x^{-1} \in N$, so N is a normal subgroup of G.

Let $\phi: G / N \longrightarrow G^{\prime}$ defined by $\phi(g N)=f(g)$.

- ϕ is well defined: We need to show that ϕ does not depend on the choice of coset representative i.e. if $g_{1} N=g_{2} N$ then $\phi\left(g_{1} N\right)=\phi\left(g_{2} N\right)$. Now $g_{1} N=g_{2} N \Rightarrow g_{2}^{-1} g_{1} \in$ $N \Rightarrow f\left(g_{2}^{-1} g_{1}\right)=e^{\prime} \Rightarrow f\left(g_{1}\right)=f\left(g_{2}\right) \Rightarrow \phi\left(g_{1} N\right)=\phi\left(g_{2} N\right)$.
- ϕ is a homomorphism: $\phi\left(g_{1} N\right) \phi\left(g_{2} N\right)=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right)=\phi\left(g_{1} g_{2} N\right)$.
- ϕ is onto: Let $y \in G^{\prime}$, then f being onto, there exists $x \in G$ such that $f(x)=y$. Clearly $\phi(x N)=f(x)=y$.
- ϕ is 1-1. If $g_{1} N \neq g_{2} N$, then $g_{2}^{-1} g_{1} \neq N$, so $f\left(g_{2}^{-1} g_{1}\right) \neq e^{\prime} \Leftrightarrow f\left(g_{1}\right) \neq f\left(g_{2}\right) \Leftrightarrow$ $\phi\left(g_{1} N\right) \neq \phi\left(g_{2} N\right)$.

Thus ϕ is an isomorphism from G / N onto G^{\prime}, so $G / N \simeq G^{\prime}$.
Note 1: If $\eta: G \longrightarrow G / N$ is the natural homomorphism i.e. $\eta(g)=g N$, then $f=\phi \circ \eta$.
Note 2: If f is not assumed to be onto, we can only say that $G / N \simeq f(G)$.

Question 1(b) Prove that the order of each subgroup of a finite group divides the order of the group.

Solution. See Theorem 2.4.1 Page 41 of Algebra by Herstein.
Question 1(c) Is each of the following statements true or false?

1. If a is an element of a ring $(R,+,$.$) and m, n \in \mathbb{Z}$, then $\left(a^{m}\right)^{n}=a^{m n}$.
2. Every subgroup of an abelian group is not necessarily abelian.
3. A semigroup $(G,$.$) is which the equations y a=b, a x=b$ are solvable for any a, b, is a group.
4. The relation of isomorphism in the class of all groups is not an equivalence relation.
5. There are only two abstract groups of order 6 .

Solution.

1. If a is an element of a ring $(R,+,$.$) and m, n \in \mathbb{Z}$, then $\left(a^{m}\right)^{n}=a^{m n}$.

True. $\left(a^{m}\right)^{n}=\underbrace{a^{m} \ldots \ldots a^{m}}_{n \text { times }}=\underbrace{\text { a.a.a.a....a }}_{m n \text { times }}=a^{m n}$.
2. Every subgroup of an abelian group is not necessarily abelian.

False. If G is abelian, and H is a subgroup of G, then for any $a, b \in H, a, b \in G \Rightarrow$ $a b=b a \Rightarrow H$ is abelian.
3. A semigroup $(G,$.$) is which the equations y a=b, a x=b$ are solvable for any a, b, is a group.
True. Let $a \in G$, then $a x=a$ is solvable \Rightarrow there exists an element $e \in G$ such that $a e=a$. Now let $b \in G$, then there exists $y \in G, y a=b$. Then $b e=y a e=y a=b$. Thus e is the right identity for G. For any $a \in G$, the equation $a x=e$ is solvable, thus a has a right inverse.

Since G has a right identity and a every element of G has a right inverse, G is a group. Note that since G is a semigroup, it is already closed the semigroup operation, and the operation is associative.
4. The relation of isomorphism in the class of all groups is not an equivalence relation.

False.

- The relation \simeq is reflexive, as the identity map is an isomorphism from any group to itself.
- If $\sigma: G \longrightarrow G^{\prime}$ is an isomorphism, then $\sigma^{-1}: G^{\prime} \longrightarrow G$ is an isomorphism, so \simeq is symmetric.
- If $G_{1} \simeq G_{2}$ and $\sigma_{1}: G_{1} \longrightarrow G_{2}$, and $G_{2} \simeq G_{3}, \sigma_{2}: G_{2} \longrightarrow G_{3}$, then $\sigma_{2} \circ \sigma_{1}$: $G_{1} \longrightarrow G_{3}$ is also an isomorphism, so $G_{1} \simeq G_{3}$, thus \simeq is transistive.

5. There are only two abstract groups of order 6 .

True. The two groups are the cyclic group of order 6 and S_{3}, the symmetric group on 3 symbols.

If G is abelian, then G has x, an element of order 2 and y, an element of order 3. Since $x y=y x, o(x y)=6$ so G is cyclic.
If G is non-abelian, let $a, b \in G$, where $o(a)=2, o(b)=3$ (such elements exist because of Cauchy's theorem), then $G=\left\{e, a, b, b^{2}, a b, b a\right\} \simeq S_{3}$.

