UPSC Civil Services Main 1986 - Mathematics Algebra

Brij Bhooshan
Asst. Professor

B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Prove that a map $f: X \longrightarrow Y$ is injective if and only if f can be left cancelled in the sense that $f \circ g=f \circ h \Rightarrow g=h$. Prove that f is surjective if and only if it can be right cancelled in the sense that $g \circ f=h \circ f \Rightarrow g=h$.

Solution. Suppose that f is injective (1-1). Let $f \circ g=f \circ h$, where g, h are mappings from $Z \longrightarrow X$, where Z can be arbitrary. We have to prove $g(z)=h(z) \forall z \in Z$. If $g(z) \neq h(z)$ then $f(g(z)) \neq f(h(z))$, since f is injective, consequently $f \circ g \neq f \circ h$. Thus $g(z)=h(z) \forall z \in Z$, so $f \circ g=f \circ h \Rightarrow g=h$.

Conversely let $f \circ g=f \circ h \Rightarrow g=h$. We have to prove that f is $1-1$. Suppose it is not 1-1. Then there exist $x_{1}, x_{2} \in X, x_{1} \neq x_{2}, f\left(x_{1}\right)=f\left(x_{2}\right)$. Define $g, h: X \longrightarrow X$ by $g(x)=x_{1}, h(x)=x_{2}$ for all $x \in X$. Then $\forall x \in X f(g(x))=f\left(x_{1}\right)=f\left(x_{2}\right)=f(h(x))$, so $f \circ g=f \circ h$, but $g \neq h$, which is a contradiction. Thus f must be 1-1.

Suppose that f is onto. Given $(g \circ f)(x)=(h \circ f)(x)$, we need to show that $g(y)=h(y)$ for all $y \in Y$. For any $y \in Y$, there exists $x \in X$ such that $f(x)=y$, since f is onto. Thus $g(y)=(g \circ f)(x)=(h \circ f)(x)=h(y)$, showing that $g \circ f=h \circ f \Rightarrow g=h$.

Conversely let $g \circ f=h \circ f \Rightarrow g=h$. We have to prove that f is onto. Suppose it is not onto. Then there exists $y_{0} \in Y$ such that there is no $x \in X$ such that $f(x)=y_{0}$. Let $g, h: Y \longrightarrow Z$ (for any Z) be defined by $g(y)=h(y)$ if $y \neq y_{0}$, and $g\left(y_{0}\right) \neq h\left(y_{0}\right)$. Clearly $(g \circ f)(x)=(g \circ f)(x)$ for every $x \in X$, but $g \neq h$, which is a contradiction. Thus f is onto.

Question 1(b) The product $H K$ of two subgroups H, K of a group G is a subgroup of G if and only if $H K=K H$.

Solution. See Lemma 2.5.1 Page 44 of Algebra by Herstein.
Question 1(c) Prove that a finite integral domain is a field.
Solution. See lemma 3.2.2 Page 127 of Algebra by Herstein.

