UPSC Civil Services Main 1987 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let $f: X \longrightarrow Y, g: Y \longrightarrow Z$ be bijections, prove that $g \circ f$ is a bijection and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Solution. $g \circ f: X \longrightarrow Z$. Let $x_{1} \neq x_{2}$ then then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ because f is 1-1. Thus $g\left(f\left(x_{1}\right)\right) \neq g\left(f\left(x_{2}\right)\right)$ because g is 1-1. Thus $g \circ f$ is 1-1.

For any $z \in Z, \exists y \in Y$ such that $g(y)=z$, because g is onto. Now $y \in Y$, so there exists $x \in X$ such that $f(x)=y$, because f is onto. Thus for any $z \in Z$, we have determined $x \in X$ such that $(g \circ f)(x)=g(f(x))=g(y)=z$, thus $g \circ f$ is onto. Thus $g \circ f$ is invertible.

$$
\begin{aligned}
(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)(z) & =(g \circ f) f^{-1}\left(g^{-1}(z)\right) \\
& =(g \circ f)\left(f^{-1}\left(g^{-1}(z)\right)\right) \\
& =g\left(f\left(f^{-1}(g(z))\right)\right) \\
& =g\left(g^{-1}(z)\right)=z \quad \forall z \in Z
\end{aligned}
$$

Thus $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=I_{Z}$.

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)(x) & =\left(f^{-1} \circ g^{-1}\right)(g(f(x)) \\
& =f^{-1}\left(g^{-1}(g(f(x)))\right) \\
& =f^{-1}(f(x))=x \quad \forall x \in X
\end{aligned}
$$

Thus $\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=I_{X}$, so $f^{-1} \circ g^{-1}=g \circ f$.
Question 1(b) Prove that $H * K$ is a subgroup of $(G, *)$ if and only if $H * K=K * H$.
Solution. See Lemma 2.5.1, Page 44 of Algebra by Herstein.

Question 1(c) If G is a finite group of order g and H is a subgroup of G of order h, then prove that h is a factor of g.

Solution. See Theorem 2.4.1, Page 41 of Algebra by Herstein.

