UPSC Civil Services Main 1987 - Mathematics Algebra

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) Let $f: X \longrightarrow Y, g: Y \longrightarrow Z$ be bijections, prove that $g \circ f$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Solution. $g \circ f : X \longrightarrow Z$. Let $x_1 \neq x_2$ then then $f(x_1) \neq f(x_2)$ because f is 1-1. Thus $g(f(x_1)) \neq g(f(x_2))$ because g is 1-1. Thus $g \circ f$ is 1-1.

For any $z \in Z$, $\exists y \in Y$ such that g(y) = z, because g is onto. Now $y \in Y$, so there exists $x \in X$ such that f(x) = y, because f is onto. Thus for any $z \in Z$, we have determined $x \in X$ such that $(g \circ f)(x) = g(f(x)) = g(y) = z$, thus $g \circ f$ is onto. Thus $g \circ f$ is invertible.

$$\begin{array}{rcl} (g\circ f)\circ (f^{-1}\circ g^{-1})(z) & = & (g\circ f)f^{-1}(g^{-1}(z))\\ & = & (g\circ f)(f^{-1}(g^{-1}(z)))\\ & = & g(f(f^{-1}(g(z))))\\ & = & g(g^{-1}(z)) = z \quad \forall z\in Z \end{array}$$

Thus $(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_Z$.

$$\begin{array}{rcl} (f^{-1} \circ g^{-1}) \circ (g \circ f)(x) & = & (f^{-1} \circ g^{-1})(g(f(x))) \\ & = & f^{-1}(g^{-1}(g(f(x)))) \\ & = & f^{-1}(f(x)) = x \quad \forall x \in X \end{array}$$

Thus
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_X$$
, so $f^{-1} \circ g^{-1} = g \circ f$.

Question 1(b) Prove that H * K is a subgroup of (G, *) if and only if H * K = K * H.

Solution. See Lemma 2.5.1, Page 44 of Algebra by Herstein.

Question 1(c) If G is a finite group of order g and H is a subgroup of G of order h, then prove that h is a factor of g.

Solution. See Theorem 2.4.1, Page 41 of Algebra by Herstein.