UPSC Civil Services Main 1988 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) If H and K are normal subgroups of a group G such that $H \cap K=\{e\}$, show that $h k=k h$ for $h \in H, k \in K$.

Solution. Consider $h k h^{-1} k^{-1}$. Since K is a normal subgroup of $G, h k h^{-1} \in K \Rightarrow$ $h k h^{-1} k^{-1} \in K$. Similarly, H is normal in G, so $k h k^{-1} \in H \Rightarrow h k h^{-1} k^{-1} \in H$. Thus $h k h^{-1} k^{-1} \in H \cap K \Rightarrow h k h^{-1} k^{-1}=e \Rightarrow h k=k h$ as required.

Question 1(b) Show that the set of even permutations on n symbols, $n>1$, is a normal subgroup of the symmetric group S_{n} and has order $n!/ 2$.

Solution. Let A_{n} be the set of all even permutations, then $A_{n} \neq \emptyset$ because the identity permutation is in A_{n}. If $\alpha, \beta \in A_{n}$, then $\alpha \beta \in A_{n}$ because α even, β even $\Rightarrow \alpha \beta$ is an even permutation. $\alpha \in A_{n} \Rightarrow \alpha^{-1} \in A_{n}$, because α even $\Rightarrow \alpha^{-1}$ even. Thus A_{n} is a subgroup of S_{n}.
A_{n} is a normal subgroup. Let $\beta \in A_{n}$, then $\alpha \beta \alpha^{-1}$ is even for all $\alpha \in S_{n}$, because if α is odd, then α^{-1} is odd, so $\alpha \beta \alpha^{-1}$ is even, and if α is even, then α^{-1} is even, so $\alpha \beta \alpha^{-1}$ is even. Thus $\alpha \beta \alpha^{-1} \in A_{n}$ for all $\alpha \in S_{n}, \beta \in A_{n}$, so A_{n} is normal in S_{n}.

Since $n>1, S_{n}$ has an odd permutation, for example (1,2). Then $S_{n}=A_{n} \cup A_{n}(1,2)$ is the coset decomposition of S_{n} modulo A_{n} : Let $\alpha \in S_{n}$. If α is even, then $\alpha \in A_{n}$. If α is odd, then $\beta=\alpha(1,2)$ is even, so $\beta \in A_{n}$. Now $\alpha=\beta(1,2) \in A_{n}(1,2)$, so $S_{n}=A_{n} \cup A_{n}(1,2)$. It is obvious the $A_{n} \cap A_{n}(1,2)=\emptyset$, so the index of A_{n} in S_{n} is 2, i.e. the order of $A_{n}=n!/ 2$ as required.

Question 1(c) Prove that the set of inner automorphisms of a group G is a normal subgroup of the group of automorphisms of G.

Solution. Let A be the group of automorphisms of G and let I be the set of all inner automorphisms (which are automorphisms of the form $\alpha_{a}(x)=a x a^{-1}$ for $a \in G$).

1. $I \neq \emptyset$ as the identity automorphism is in I, because if α is the identity automorphism, then $\alpha(x)=x=e x e^{-1}=\alpha_{e}(x)$, so $\alpha \in I$.
2. If $\alpha_{a}, \alpha_{b} \in I$, then $\alpha_{a} \circ \alpha_{b}(x)=\alpha_{a}\left(\alpha_{b}(x)\right)=a\left(b x b^{-1}\right) b^{-1}=\alpha_{a b}(x) \Rightarrow \alpha_{a} \circ \alpha_{b}=\alpha_{a b} \in I$.
3. $\alpha_{a} \in I \Rightarrow \alpha_{a^{-1}} \in I$ and $\alpha_{a} \alpha_{a^{-1}}=\alpha_{a a^{-1}}=\alpha_{e}$. Thus $\alpha_{a^{-1}}$ is the inverse of α_{a} in I.

Thus I is a subgroup of G.
Let $\sigma \in A$ be arbitrary. Then for any $\alpha_{a} \in I$,

$$
\begin{aligned}
\sigma \alpha_{a} \sigma^{-1}(x) & =\sigma\left(a \sigma^{-1}(x) a^{-1}\right) \\
& =\sigma(a) \sigma\left(\sigma^{-1}(x)\right) \sigma\left(a^{-1}\right) \\
& =\sigma(a) x \sigma(a)^{-1}=\alpha_{\sigma(a)}(x)
\end{aligned}
$$

Thus $\sigma \alpha_{a} \sigma^{-1} \in I$. Hence I is a normal subgroup of A.

Question 2(a) Show that the numbers $0,2,4,6,8$ with addition and multiplication modulo 10 form a field isomorphic to J_{5} the ring of integers modulo 5 . Give the isomorphism explicitly.

Solution. Let $F=\{0,2,4,6,8\}$.

1. F is closed w.r.t. addition modulo 10 . The addition table is

+	0	2	4	6	8
0	0	2	4	6	8
2	2	4	6	8	0
4	4	6	8	0	2
6	6	8	0	2	4
8	8	0	2	4	6

2. Addition is commutative and associative, as it is so in J_{10} and $F \subset J_{10}$.
3. Clearly 2,8 and 4,6 are inverses of each other, so F is an abelian group under addition.
4. F is closed under multiplication. The multiplication table is

\times	0	2	4	6	8
0	0	0	0	0	0
2	0	4	8	2	6
4	0	8	6	4	2
6	0	2	4	6	8
8	0	6	2	8	4

5. 6 is the multiplicative identity, and multiplication is commutative.
6. Every non-zero element has an inverse $2 \times 8=4 \times 4=6 \times 6=6$.

Thus $F^{*}=F-\{0\}$ is a multiplicative group. Thus F is a field.
Isomorphism. For $\alpha \in \mathbb{Z}$, let $[\alpha]$ be the residue class of α modulo 5 . Let $\sigma: F \longrightarrow J_{5}$ be defined by $\sigma(0)=[0], \sigma(6)=[1], \sigma(2)=\sigma(6+6)=\sigma(6)+\sigma(6)=[1]+[1]=[2], \sigma(4)=$ $\sigma(6+6+6+6)=4 \sigma(6)=[4], \sigma(8)=\sigma(6+6+6)=3 \sigma(6)=[3]$. It can be easily checked that σ is an isomorphism.

Question 2(b) If R is a commutative ring with identity and U is an ideal of R. Show that U is maximal if and only if R / U is a field.

Solution. Let U be a maximal ideal. We already know that R / U is a commutative ring with identity given by $1+U . R / U$ will be a field if we show that every nonzero element $a+U \in R / U$ is invertible. Now $a+U \neq U \Rightarrow a \notin U$. Thus the ideal generated by a and U contains U properly $\Rightarrow\langle a, U\rangle=R$ as U is maximal. Thus $1=a b+u$ for some $b \in R, u \in U \Rightarrow(a+U)(b+U)=1+U \Rightarrow a+U$ is invertible. Thus R / U is a field.

Conversely, let R / U be a field, and $M \supseteq U$ be an ideal. We shall show that if $M \neq U$, then $M=R \Rightarrow U$ is maximal. Now if $M \supsetneq U \Rightarrow \exists a \in M, a \neq U$. Thus $a+U$ is a non-zero element of R / U and therefore invertible i.e. there exists $b+U \in R / U$ such that $(a+U)(b+U)=1+U$, or $a b-1 \in U \Rightarrow a b-1 \in M$. But $a b \in M$ as $a \in M$, therefore $1 \in M \Rightarrow M=R \Rightarrow U$ is maximal.

See theorem 3.5.1 Page 138 of Algebra by Herstein for a different proof.
Question 2(c) Determine all the ideals U in J_{12}, the ring of integers modulo 12. In each case describe J_{12} / U by finding a familiar ring with which the quotient ring is isomorphic. Which of these ideals is maximal?

Solution. Let $\langle[\alpha]\rangle$ denote the ideal generated by $[\alpha] \in J_{12}=\{[0],[1], \ldots[11]\}$. Since J_{12}
is a principal ideal domain, we have to determine the distinct principal ideals. These are

$$
\begin{aligned}
\langle[0]\rangle & =\{[0]\} \\
\langle[1]\rangle & =J_{12}=\langle[11]\rangle=\langle[5]\rangle=\langle[7]\rangle \\
\langle[2]\rangle & =\{[0],[2],[4],[6],[8],[10]\}=\langle[10]\rangle \\
\langle[3]\rangle & =\{[0],[3],[6],[9]\}=\langle[9]\rangle \\
\langle[4]\rangle & =\{[0],[4],[8]\}=\langle[8]\rangle \\
\langle[6]\rangle & =\{[0],[6]\}
\end{aligned}
$$

If $U=\langle[2]\rangle$, then $R / U=\{[0]+U,[1]+U\} \simeq \mathbb{Z} / 2 \mathbb{Z}$, the isomorphism being $\sigma([0]+U)=0$ $\bmod 2, \sigma([1]+U)=1 \bmod 2$.

If $U=\langle[3]\rangle$, then $R / U=\{[0]+U,[1]+U,[2]+U\} \simeq \mathbb{Z} / 3 \mathbb{Z}$, the isomorphism being $\sigma([0]+U)=0 \bmod 3, \sigma([1]+U)=1 \bmod 3, \sigma([2]+U)=2 \bmod 3$.

If $U=\langle[4]\rangle$, then $R / U=\{[0]+U,[1]+U,[2]+U,[3]+U\} \simeq \mathbb{Z} / 4 \mathbb{Z}$, the isomorphism being $\sigma([0]+U)=0 \bmod 4, \sigma([1]+U)=1 \bmod 4, \sigma([2]+U)=2 \bmod 4, \sigma([3]+U)=3$ $\bmod 4$.

If $U=\langle[6]\rangle$, then $R / U=\{[\alpha]+U \quad \mid \quad 0 \leq \alpha \leq 5\} \simeq \mathbb{Z} / 6 \mathbb{Z}$, the isomorphism being $\sigma([\alpha]+U)=\alpha \bmod 6$.

Clearly ideals generated by [2], [3] are maximal as $R /\langle[2]\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$, and $R /\langle[3]\rangle \simeq \mathbb{Z} / 3 \mathbb{Z}$, which are fields.

Thus J_{12} has 6 ideals, namely $\langle[0]\rangle,\langle[1]\rangle,\langle[2]\rangle,\langle[3]\rangle,\langle[4]\rangle,\langle[4]\rangle$ of which $\langle[2]\rangle,\langle[3]\rangle$ are maximal.

