UPSC Civil Services Main 1990 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Let G be a group having no proper subgroup. Show that G should be a finite group of order which is a prime, or unity.

Solution. See question $1(\mathrm{a})$, 1991. Once we have proved that G is finite, then we observe that G has exactly one element if and only if the order of G is 1 . If the order of $G>1$, then we show that it is a prime number.

Question 1(b) If the order of a group is 20, show that its 5-Sylow subgroup is a normal subgroup. Also prove that a group of order 16 has a proper normal subgroup.

Solution. We know from various Sylow theorems that the numbr of 5 -Sylow subgroups $\equiv 1 \bmod 5$ and is a divisor of 20 and therefore 4 . Thus G, a group of order 20 , has exactly one Sylow subgroup of order 5 , say H. Now $a H a^{-1}$ for any $a \in G$ is also a subgroup of order 5 , therefore by uniqueness, $a H a^{-1}=H$. Thus H is normal in G.

For the second part, we prove a general theorem of which this is a special case.
Theorem. Let G be a group of order p^{r}, p a prime, then G has a normal subgroup of order p^{s} for every $s, 0 \leq s<r$.

Proof: By induction on r . If $r=1$, then G is cyclic of prime order, hence the result is true. Assume true for groups of order $p^{m}, m<r$. Since G is a group of order p^{r}, the power of a prime, its center is non-trivial. Since the order of the center is $p^{n}, n \geq 1$, the center has an element, say a, of order p (Cauchy's theorem, Theorem 2.11.3 of Algebra by Herstein). Let $H=\langle a\rangle$ be the group generated by a. Since $a \in$ center of G, H is a normal subgroup of G. Now G / H is a group of order p^{r-1}. Using the induction hypothesis, we see that G / H has a normal subgroup N^{*} of order $p^{s-1}, 0 \leq s-1<r-1$. Let η : $G \longrightarrow G / H$ be the natural homomorphism. Set $N=\eta^{-1}\left(N^{*}\right)$, we show that N is a normal subgroup of G of order $p^{s} . \eta^{-1}\left(N^{*}\right) \neq \emptyset$. If $x, y \in N$, then $\eta(x), \eta(y) \in N^{*}$,
then $\eta(x)(\eta(y))^{-1} \in N^{*} \Rightarrow \eta\left(x y^{-1}\right) \in N^{*} \Rightarrow x y^{-1} \in N$, so N is a subgroup of G. For $x \in N, a \in G, \eta(x) \in N^{*} \Rightarrow \eta(a) \eta(x) \eta(a)^{-1}=\eta\left(a x a^{-1}\right) \in N^{*}$ as N^{*} is a normal subgroup of G / H. Thus $a x a^{-1} \in N$, so N is a normal subgroup of $G . N \supseteq H$ is immediate as $\forall h \in H . \eta(h)=H$, the identity element of G / H. Consider $\eta: N \longrightarrow N^{*}$, then η is a homomorphism with kernel $H \Rightarrow N / H \simeq N^{*} \Rightarrow o(N)=o\left(N^{*}\right) o(H)=p^{s}$.

Now for a group of order $16, p=2, r=4$, and the above theorem shows that it has normal groups of order 2,4 , and 8 .

Question 1(c) If C is the center of a group G, and G / C is cyclic, prove that G is abelian.
Solution. See question 1(c), 1991.
Question 2(a) Show that the set of Gaussian integers is a Euclidean ring. Find an HCF of $5 i$ and $3+i$.

Solution. $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ is an integral domain as it is a subring of the field of complex numbers.

An integral domain R is said to be a Euclidean domain if there exists a function N : $R \rightarrow \mathbb{Z}$ (the ring of integers) such that

1. $N(a) \geq 0$
2. $N(a b) \geq N(a)$ where $a, b \neq 0$
3. Given $a, b \in R, b \neq 0$, there exist $q, r \in R$ such that $a=b q+r$ where $r=0$ or $N(r)<N(b)$.

For $\mathbb{Z}[i]$, let $N(\alpha)=N(a+i b)=a^{2}+b^{2}$. Clearly

1. $N(\alpha) \geq 0$ for every $\alpha \in \mathbb{Z}[i]$.
2. $N(\alpha \beta) \geq N(\alpha)$ for all $\alpha, \beta \in \mathbb{Z}[i]$ because $N(\alpha \beta)=N(\alpha) N(\beta)$ and $N(\beta) \geq 1$ if $\beta \neq 0$.
3. Let $\alpha=a+i b, \beta=m+n i, \beta \neq 0$. Then $\operatorname{frac} \alpha \beta=\frac{a+i b}{m+n i}=x+i y, x \in \mathbb{Q}, y \in \mathbb{Q}$. Determine $p, q \in \mathbb{Z}$ such that $|x-p| \leq \frac{1}{2},|y-q| \leq \frac{1}{2}$ (take $p=[x]$ if $x=[x]+\theta, 0 \leq \theta \leq \frac{1}{2}$ and $p=[x]+1$ if $\left.x=[x]+\theta, \frac{1}{2}<\theta<1\right)$.
Now $\frac{\alpha}{\beta}-(p+q i)=x-p+i(y-q)$. Thus $N\left(\frac{\alpha}{\beta}-(p+q i)\right)=(x-p)^{2}+(y-q)^{2}<1$.
Now $\alpha=(p+q i)(m+n i)+\gamma$ where $\gamma=(x-p+i(y-q))(m+n i)$. Clearly $\gamma \in \mathbb{Z}[i]$ and $N(\gamma)=N(\beta)\left((x-p)^{2}+(y-q)^{2}\right)<N(\beta)$, which is what we wanted to prove.

Thus $\mathbb{Z}[i]$ is a Euclidean ring.
Now $5 i=(3+i)(2 i)+(2-i)$, and $3+i=(2-i)(1+i) \Rightarrow(5 i, 3+i)=2-i$.
Note: In this case writing the division algorithm was easy, otherwise $N(5)=25, N(3+$ $i)=10 \Rightarrow \mathrm{GCD}$ is a factor of $5=(25,10)$. Thus the GCD can be $1,2-i, 2+i, 5$. We rule out $2+i, 5$ by showing that $2+i \not \backslash 3+i .2-i$ then fits the bill.

Question 2(b) If K is a finite extension of a field F of degree n, prove taht any element of K is algebraic over F with degree m where m divides n.

Solution. Let $\alpha \in K$, then the $n+1$ elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ are linearly dependent over F, because $(K: F)=$ degree of K over $F=n$. Thus there exist $a_{0}, a_{1}, \ldots, a_{n} \in F$, not all 0 , such that $a_{0}+a_{1} \alpha+\ldots+a_{n} \alpha^{n}=0 \Rightarrow \alpha$ is a root of $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in F[x] \Rightarrow \alpha$ is algebraic over F.

Let $p(x)$ be the minimal polynomial of α over $F, \operatorname{deg} p(x)=m$. Then $(F(\alpha): F)=m$ - first of all $1, \alpha, \ldots, \alpha^{m-1}$ are linearly independent over F, because otherwise α will be the root of a non-zero polynomial of degree less than m. We know that α algebraic over F implies $F(\alpha)=F[\alpha]$ as $F(\alpha)$ is the smallest field containing F and α, and $F[\alpha]$ is a field ${ }^{1}$.

Now any element of $F[\alpha]$ is a linear combination of $1, \alpha, \ldots \alpha^{m-1}$. Take $f(\alpha)$ again. $f(x)=q(x) p(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<m$. Thus $f(\alpha)=r(\alpha)$, hence $(F(\alpha)$: $F)=m$. We also know that $(K: F)=(K: F(\alpha))(F(\alpha): F)$ (See 2(c), 1993 - if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of K over $F(\alpha)$, and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis of $F(\alpha)$ over F, then $\left\{v_{i} w_{j} \mid 1 \leq i \leq r, 1 \leq j \leq m\right\}$ is a basis for K over $\left.F\right)$.

Thus m divides n.

Question 2(c) Find the minimum polynomial over \mathbb{Q} (the field of rationals) of $\sqrt{5-\sqrt{2}}$ and $i+\sqrt{3}$.

Solution. Let $x=i+\sqrt{3}$, then $(x-i)^{2}=3 \Rightarrow x^{2}-2 i x+i^{2}=3 \Rightarrow x^{2}-4=2 i x \Rightarrow$ $\left(x^{2}-4\right)^{2}=-4 x^{2} \Rightarrow x^{4}-4 x^{2}+16=0$. We shall show that $x^{4}-4 x^{2}+16$ is irreducible over \mathbb{Q}. If possible, let $x^{4}-4 x^{2}+16=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$, then $a+c=0, a c+b+d=$ $-4, a d+b c=0, d b=16$. Using $a+c=0, a c+b d=0$, we get $c(b-d)=0$. If $c=0$, then $a=0$, so $b+d=-4, b d=16$ so b, d are roots of $x^{2}+4 x+16$, thus b, d are not real numbers. Thus $b=d \Rightarrow b=d= \pm 4 \Rightarrow a c=-12$ or $a c=0$ (not possible). Thus a, c are roots of $x^{2}-12=0$, thus are not rationals. Hence $x^{4}-4 x^{2}+16$ is not reducible.

A simpler way of seeing the above is that $t^{2}-4 t+16$ has non-real roots, hence is irreducible over \mathbb{Q}, so $x^{4}-4 x^{2}+16$ is not reducible over \mathbb{Q}.

Let $x=\sqrt{5-\sqrt{2}}$. Then $x^{2}-5=-\sqrt{2} \Rightarrow x^{4}-10 x^{2}+23=0$ is a polynomial satisfied by $\sqrt{5-\sqrt{2}}$. It is the minimal polynomial of $\sqrt{5-\sqrt{2}}$ because it is irreducible over \mathbb{Q}, since $t^{2}-10 t+23$ has non real roots.

Hence the degree of $\sqrt{5-\sqrt{2}}$ and $i+\sqrt{3}$ is 4 .

[^0]
[^0]: ${ }^{1}$ Let $f(\alpha)=a_{0}+a_{1} \alpha+\ldots+a_{r} \alpha^{r}$ be any non-zero element of $F[\alpha]$. Then the polynomial $p(x) \not \chi f(x) \Rightarrow$ $(f(x), p(x))=1 \Rightarrow$ there exist $b(x), c(x) \in F[x]$ such that $p(x) b(x)+f(x) c(x)=1 \Rightarrow f(\alpha) c(\alpha)=1 \Rightarrow f(\alpha)$ is invertible

