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Question 1(a) Let G be a group having no proper subgroup. Show that G should be a finite
group of order which is a prime, or unity.

Solution. See question 1(a), 1991. Once we have proved that G is finite, then we observe
that G has exactly one element if and only if the order of G is 1. If the order of G > 1, then
we show that it is a prime number.

Question 1(b) If the order of a group is 20, show that its 5-Sylow subgroup is a normal
subgroup. Also prove that a group of order 16 has a proper normal subgroup.

Solution. We know from various Sylow theorems that the numbr of 5-Sylow subgroups
≡ 1 mod 5 and is a divisor of 20 and therefore 4. Thus G, a group of order 20, has exactly
one Sylow subgroup of order 5, say H. Now aHa−1 for any a ∈ G is also a subgroup of order
5, therefore by uniqueness, aHa−1 = H. Thus H is normal in G.

For the second part, we prove a general theorem of which this is a special case.
Theorem. Let G be a group of order pr, p a prime, then G has a normal subgroup of

order ps for every s, 0 ≤ s < r.
Proof: By induction on r. If r = 1, then G is cyclic of prime order, hence the result

is true. Assume true for groups of order pm,m < r. Since G is a group of order pr, the
power of a prime, its center is non-trivial. Since the order of the center is pn, n ≥ 1, the
center has an element, say a, of order p (Cauchy’s theorem, Theorem 2.11.3 of Algebra
by Herstein). Let H = 〈a〉 be the group generated by a. Since a ∈ center of G,H is a
normal subgroup of G. Now G/H is a group of order pr−1. Using the induction hypothesis,
we see that G/H has a normal subgroup N∗ of order ps−1, 0 ≤ s − 1 < r − 1. Let η :
G −→ G/H be the natural homomorphism. Set N = η−1(N∗), we show that N is a
normal subgroup of G of order ps. η−1(N∗) 6= ∅. If x, y ∈ N , then η(x), η(y) ∈ N∗,
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then η(x)(η(y))−1 ∈ N∗ ⇒ η(xy−1) ∈ N∗ ⇒ xy−1 ∈ N , so N is a subgroup of G. For
x ∈ N, a ∈ G, η(x) ∈ N∗ ⇒ η(a)η(x)η(a)−1 = η(axa−1) ∈ N∗ as N∗ is a normal subgroup
of G/H. Thus axa−1 ∈ N , so N is a normal subgroup of G. N ⊇ H is immediate as
∀h ∈ H.η(h) = H, the identity element of G/H. Consider η : N −→ N∗, then η is a
homomorphism with kernel H ⇒ N/H ' N∗ ⇒ o(N) = o(N∗)o(H) = ps.

Now for a group of order 16, p = 2, r = 4, and the above theorem shows that it has
normal groups of order 2, 4, and 8.

Question 1(c) If C is the center of a group G, and G/C is cyclic, prove that G is abelian.

Solution. See question 1(c), 1991.

Question 2(a) Show that the set of Gaussian integers is a Euclidean ring. Find an HCF
of 5i and 3 + i.

Solution. Z[i] = {a+ bi | a, b ∈ Z} is an integral domain as it is a subring of the field of
complex numbers.

An integral domain R is said to be a Euclidean domain if there exists a function N :
R→ Z (the ring of integers) such that

1. N(a) ≥ 0

2. N(ab) ≥ N(a) where a, b 6= 0

3. Given a, b ∈ R, b 6= 0, there exist q, r ∈ R such that a = bq + r where r = 0 or
N(r) < N(b).

For Z[i], let N(α) = N(a+ ib) = a2 + b2. Clearly

1. N(α) ≥ 0 for every α ∈ Z[i].

2. N(αβ) ≥ N(α) for all α, β ∈ Z[i] because N(αβ) = N(α)N(β) and N(β) ≥ 1 if β 6= 0.

3. Let α = a + ib, β = m + ni, β 6= 0. Then fracαβ = a+ib
m+ni

= x + iy, x ∈ Q, y ∈ Q.

Determine p, q ∈ Z such that |x−p| ≤ 1
2
, |y−q| ≤ 1

2
(take p = [x] if x = [x]+θ, 0 ≤ θ ≤ 1

2

and p = [x] + 1 if x = [x] + θ, 1
2
< θ < 1).

Now α
β
− (p+ qi) = x− p+ i(y − q). Thus N(α

β
− (p+ qi)) = (x− p)2 + (y − q)2 < 1.

Now α = (p+ qi)(m+ ni) + γ where γ = (x− p+ i(y − q))(m+ ni). Clearly γ ∈ Z[i]
and N(γ) = N(β)((x− p)2 + (y − q)2) < N(β), which is what we wanted to prove.

Thus Z[i] is a Euclidean ring.
Now 5i = (3 + i)(2i) + (2− i), and 3 + i = (2− i)(1 + i)⇒ (5i, 3 + i) = 2− i.
Note: In this case writing the division algorithm was easy, otherwise N(5) = 25, N(3 +

i) = 10⇒ GCD is a factor of 5 = (25, 10). Thus the GCD can be 1, 2− i, 2 + i, 5. We rule
out 2 + i, 5 by showing that 2 + i 6 | 3 + i. 2− i then fits the bill.
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Question 2(b) If K is a finite extension of a field F of degree n, prove taht any element
of K is algebraic over F with degree m where m divides n.

Solution. Let α ∈ K, then the n+ 1 elements 1, α, α2, . . . , αn are linearly dependent over
F , because (K : F ) = degree of K over F = n. Thus there exist a0, a1, . . . , an ∈ F , not all
0, such that a0 + a1α + . . . + anα

n = 0 ⇒ α is a root of f(x) =
∑n

i=0 aix
i ∈ F [x] ⇒ α is

algebraic over F .
Let p(x) be the minimal polynomial of α over F , deg p(x) = m. Then (F (α) : F ) = m

— first of all 1, α, . . . , αm−1 are linearly independent over F , because otherwise α will be
the root of a non-zero polynomial of degree less than m. We know that α algebraic over F
implies F (α) = F [α] as F (α) is the smallest field containing F and α, and F [α] is a field1.

Now any element of F [α] is a linear combination of 1, α, . . . αm−1. Take f(α) again.
f(x) = q(x)p(x) + r(x) where r(x) = 0 or deg r(x) < m. Thus f(α) = r(α), hence (F (α) :
F ) = m. We also know that (K : F ) = (K : F (α))(F (α) : F ) (See 2(c), 1993 — if
{v1, . . . , vr} is a basis of K over F (α), and {w1, . . . , wm} is a basis of F (α) over F , then
{viwj | 1 ≤ i ≤ r, 1 ≤ j ≤ m} is a basis for K over F ).

Thus m divides n.

Question 2(c) Find the minimum polynomial over Q (the field of rationals) of
√

5−
√

2
and i+

√
3.

Solution. Let x = i +
√

3, then (x − i)2 = 3 ⇒ x2 − 2ix + i2 = 3 ⇒ x2 − 4 = 2ix ⇒
(x2 − 4)2 = −4x2 ⇒ x4 − 4x2 + 16 = 0. We shall show that x4 − 4x2 + 16 is irreducible over
Q. If possible, let x4 − 4x2 + 16 = (x2 + ax + b)(x2 + cx + d), then a + c = 0, ac + b + d =
−4, ad + bc = 0, db = 16. Using a + c = 0, ac + bd = 0, we get c(b − d) = 0. If c = 0, then
a = 0, so b+ d = −4, bd = 16 so b, d are roots of x2 + 4x+ 16, thus b, d are not real numbers.
Thus b = d ⇒ b = d = ±4 ⇒ ac = −12 or ac = 0 (not possible). Thus a, c are roots of
x2 − 12 = 0, thus are not rationals. Hence x4 − 4x2 + 16 is not reducible.

A simpler way of seeing the above is that t2−4t+16 has non-real roots, hence is irreducible
over Q, so x4 − 4x2 + 16 is not reducible over Q.

Let x =
√

5−
√

2. Then x2−5 = −
√

2⇒ x4−10x2 +23 = 0 is a polynomial satisfied by√
5−
√

2. It is the minimal polynomial of
√

5−
√

2 because it is irreducible over Q, since
t2 − 10t+ 23 has non real roots.

Hence the degree of
√

5−
√

2 and i+
√

3 is 4.

1Let f(α) = a0 + a1α+ . . .+ arα
r be any non-zero element of F [α]. Then the polynomial p(x) 6 | f(x)⇒

(f(x), p(x)) = 1 ⇒ there exist b(x), c(x) ∈ F [x] such that p(x)b(x) + f(x)c(x) = 1 ⇒ f(α)c(α) = 1 ⇒ f(α)
is invertible
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