# UPSC Civil Services Main 1991 - Mathematics Algebra 

Brij Bhooshan<br>Asst. Professor<br>B.S.A. College of Engg \& Technology<br>Mathura

Question 1(a) If the group $G$ has no non-trivial subgroups, show that $G$ must be finite of prime order.

Solution. Here we assume that $G$ has more than one element.
$G$ is cyclic: Let $a \in G, a \neq e$. Let $H$ be the cyclic group generated by $a$. Then $H \neq\{e\}$, therefore $H=G$, so $G$ is cyclic.
$G$ has finite order: If order of $G$ is infinite, then the group $K$ generated by $a^{2}$ is a non-trivial subgroup of $G$, because $K \neq\{e\}, K \neq G$ as $a \notin K$ - note that $a \in K, a=\left(a^{2}\right)^{m}$ for some $m$ shows that $a$ is of finite order $\Rightarrow G$ is of finite order. This is a contradiction, hence order of $G$ is finite.

The order of $G$ is a prime number: If the order is $p q, p>1, q>1$, then order of $a^{p}$ or equivalently the order of the group generated by $a^{p}$ is $q \Rightarrow G$ has a nontrivial subgroup, which is a contradiction. Hence order of $G$ is a prime number.

Question 1(b) Show that a group of order 9 must be abelian.
Solution. We first prove that if $G$ is a group with centre $C$ such that $G / C$ is cyclic, then $G$ is abelian. Let $G / C$ be generated by the coset $a C$. Let $x, y \in G$, then $x C=(a C)^{r}$ and $y C=(a C)^{s}$ for some integers $r, s$. This means that $x \in a^{r} C, y \in a^{s} C$ and therefore $x=a^{r} c_{1}, y=a^{s} c_{2}, c_{1}, c_{2} \in C$. Now $x y=a^{r} c_{1} a^{s} c_{2}=a^{r} a^{s} c_{1} c_{2}$ since $c_{1} \in C$, so it commutes with every element of $G$. Similarly, $c_{2} \in C$ so it commutes with $a^{r}$, so

$$
x y=a^{r+s} c_{1} c_{2}=a^{s+r} c_{2} c_{1}=a^{s} c_{2} a^{r} c_{1}=y x
$$

Hence $G$ is abelian.
Now we prove that a group $G$ of order $p^{2}, p$ prime, is abelian. In particular, a group of order 9 will be abelian. Let $C$ be the center of $G$. Then $C$ is of order $p$ or $p^{2}$ as the center of a prime power group is non-trivial (Theorem 2.11.2 page 86 of Algebra by Herstein).

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

If the order of $C$ is $p^{2}$, and $G=C$ so $G$ is abelian.
If order of $C$ is $p$, then $G / C$ is of order $p$ and therefore is a cyclic group. Thus $G$ must be abelian as shown above. In either case $G$ is abelian.

Question 1(c) If the characteristic of an integral domain $D$ is finite, show that it is a prime number.

Solution. If possible let $m$ be the chararacteristic of $D$, where $m=p q, p, q>1$. Let $a \in D, a \neq 0$. Then $0=m a^{2}=p a . q a$. But $D$ is an integral domain, therefore either $p a=0$ or $q a=0$. Suppose without loss of generality that $p a=0$. If $b \in D$ is arbitrary, then $0=(p a) b=(p b) a$. But $a \neq 0$, therefore $p b=0 \Rightarrow m$ is not the smallest positive integer such that $m a=0$ for every $a \in D$. Thus the assumption $m$ has a proper factorization is wrong, hence $m$ is a prime number.

Question 2(a) Find the greatest common divisor (GCD) in J[i], the ring of Gaussian integers of (i) $3+4 i$ and $4-3 i$ (ii) $11+7 i$ and $18-i$.

Solution. (i) $4-3 i=(-i)(3+4 i)$, and $-i$ is a unit in $J[i]$ as $i(-i)=1$. It follows that $4-3 i$ and $3+4 i$ are associates of each other. Thus the GCD of $4-3 i$ and $3+4 i$ can be taken to be either of them.
(ii) $N(11+7 i)=(11+7 i)(11-7 i)=170, N(18-i)=325$. Since $(170,325)=5$, we can find integers $x, y$ such that $170 x+325 y=5$, or

$$
(11+7 i)[(11-7 i) x]+(18-i)[(18+i) y]=5
$$

showing that if $\alpha$ divides $11+7 i, 18-i$ in $J[i]$, then $\alpha$ divides 5 . Therefore the GCD of $11+7 i, 18-i$ is a factor of 5 , i.e. $1,2-i, 2+i, 5$.

Now $\frac{11+7 i}{2+i}=\frac{(11+7 i)(2-i)}{5}=\frac{29}{5}+\frac{3}{5} i$. Thus $2+i \quad \nless 11+7 i$.
$\frac{11+7 i}{2-i}=\frac{(11+7 i)(2+i)}{5}=3+5 i$. Thus $2-i \left\lvert\, 11+7 i . \frac{18-i}{2-i}=\frac{(18-i)(2+i)}{5}=\frac{37}{5}+\frac{16}{5} i\right.$, so $2-i \quad$ X $18-i$.

Thus the GCD of $11+7 i$ and $18-i$ is 1 .
Note: We could have got this by Euclid's Algorithm also.

$$
\begin{array}{rll}
18-i & =(11+7 i)+7-8 i & \\
N(7-8 i)<N(11+7 i) \\
11+7 i & =(7-8 i) i+3 & \\
7-8 i & =(2-3 i) 3+(1+i)<N(7-8 i) \\
3 & =(1+i)(1-i)+1 & \\
N(1)<N(1+i)
\end{array}
$$

Thus the GCD of $11+7 i$ and $18-i$ is 1 .

Question 2(b) Show that every maximal ideal of a commutative ring $R$ with unit element is a prime ideal.

Solution. Let $M$ be a maximal ideal. Let $a b \equiv 0 \bmod M$, i.e. $a b \in M$. Suppose that $a \notin M$ i.e. $a \not \equiv 0 \bmod M$. We shall show that $b \equiv 0 \bmod M$, proving that $M$ is a prime ideal. Consider $\langle M, a\rangle$, the ideal generated by $M$ and $a$. Clearly $M \subseteq\langle M, a\rangle$ and $M \neq\langle M, a\rangle$ as $a \notin M$, therefore $\langle M, a\rangle=R$ as $M$ is maximal. Thus $e \in\langle M, a\rangle$, where $e$ is the unit element of $R$. Thus $e=m+x a$ where $m \in M, x \in R$, so $b=m b+x a b$. $m b \in M, x a b \in M$ because $a b \in M$. Hence $m b+x a b=b \in M$, which was to be proved, showing that $M$ is a prime ideal.

Remark. The converse of the above statement is not true. Let $R=\mathbb{Z}[x], P=\langle 2\rangle$, the ideal generated by 2 , then $P$ is prime but not maximal - in fact $\langle 2\rangle \subsetneq\langle 2, x\rangle \subsetneq R$.

Question 2(c) The field $K$ is an extension of the field $F$. If $\alpha, \beta \in K$ are both algebraic over $F$, show that $\alpha \pm \beta, \alpha \beta, \alpha / \beta($ if $\beta \neq 0)$ are all algebraic over $F$.

Solution. Let $p(x)$ be the minimal polynomial of $\alpha$ over $F$, then $F[x] /\langle p(x)\rangle \simeq F[\alpha]$, the homomorphism from $F[x]$ to $F[\alpha]$ being $f(x)=f(\alpha)$ with kernel $\langle p(x)\rangle$. Thus $F[\alpha]=F(\alpha)$ (the smallest field containing $F$ and $\alpha$ in $K$ ). If $\operatorname{deg} p(x)=n$, then $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over $F$ and generate $F(\alpha)$. Hence $(F(\alpha): F)=n \Rightarrow$ if $\gamma \in F(\alpha), \gamma$ is algebraic over $F$ as $1, \gamma, \ldots, \gamma^{n}$ are linearly dependent over $F$, so $\gamma$ is a root of a polynomial of degree $\leq n$.

Now $\beta$ being algebraic over $F$, is algebraic over $F(\alpha) \Rightarrow F(\alpha . \beta)$ is a finite extension of $F(\alpha)$, and $(F(\alpha, \beta): F(\alpha))=$ degree of the minimal polynomial of $\beta$ over $F(\alpha) \leq$ degree of the minimal polynomial of $\beta$ over $F$. Since $(F(\alpha, \beta): F)=(F(\alpha, \beta): F(\alpha))(F(\alpha): F)$ (see question 2(c) of 1993), it follows that $F(\alpha, \beta)$ is an algebraic extension over $F$. In fact if $(F(\alpha, \beta): F)=m$ and $\zeta \in F(\alpha, \beta)$, then $1, \zeta, \zeta^{2}, \ldots, \zeta^{m}$ are linearly dependent, so $\zeta$ is a root of a polynomial of degree $\leq m$. Thus $\alpha \pm \beta, \alpha \beta, \alpha / \beta$, being elements of $F(\alpha, \beta)$ are all algebraic over $F$.

