UPSC Civil Services Main 1991 - Mathematics Algebra

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology Mathura

Question 1(a) If the group G has no non-trivial subgroups, show that G must be finite of prime order.

Solution. Here we assume that G has more than one element.

G is cyclic: Let $a \in G, a \neq e$. Let H be the cyclic group generated by a. Then $H \neq \{e\}$, therefore H = G, so G is cyclic.

G has finite order: If order of *G* is infinite, then the group *K* generated by a^2 is a non-trivial subgroup of *G*, because $K \neq \{e\}, K \neq G$ as $a \notin K$ — note that $a \in K, a = (a^2)^m$ for some *m* shows that *a* is of finite order $\Rightarrow G$ is of finite order. This is a contradiction, hence order of *G* is finite.

The order of *G* **is a prime number:** If the order is pq, p > 1, q > 1, then order of a^p or equivalently the order of the group generated by a^p is $q \Rightarrow G$ has a nontrivial subgroup, which is a contradiction. Hence order of *G* is a prime number.

Question 1(b) Show that a group of order 9 must be abelian.

Solution. We first prove that if G is a group with centre C such that G/C is cyclic, then G is abelian. Let G/C be generated by the coset aC. Let $x, y \in G$, then $xC = (aC)^r$ and $yC = (aC)^s$ for some integers r, s. This means that $x \in a^rC, y \in a^sC$ and therefore $x = a^rc_1, y = a^sc_2, c_1, c_2 \in C$. Now $xy = a^rc_1a^sc_2 = a^ra^sc_1c_2$ since $c_1 \in C$, so it commutes with every element of G. Similarly, $c_2 \in C$ so it commutes with a^r , so

$$xy = a^{r+s}c_1c_2 = a^{s+r}c_2c_1 = a^sc_2a^rc_1 = yx$$

Hence G is abelian.

Now we prove that a group G of order p^2 , p prime, is abelian. In particular, a group of order 9 will be abelian. Let C be the center of G. Then C is of order p or p^2 as the center of a prime power group is non-trivial (Theorem 2.11.2 page 86 of Algebra by Herstein).

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

If the order of C is p^2 , and G = C so G is abelian.

If order of C is p, then G/C is of order p and therefore is a cyclic group. Thus G must be abelian as shown above. In either case G is abelian.

Question 1(c) If the characteristic of an integral domain D is finite, show that it is a prime number.

Solution. If possible let m be the characteristic of D, where m = pq, p, q > 1. Let $a \in D, a \neq 0$. Then $0 = ma^2 = pa.qa$. But D is an integral domain, therefore either pa = 0or qa = 0. Suppose without loss of generality that pa = 0. If $b \in D$ is arbitrary, then 0 = (pa)b = (pb)a. But $a \neq 0$, therefore $pb = 0 \Rightarrow m$ is not the smallest positive integer such that ma = 0 for every $a \in D$. Thus the assumption m has a proper factorization is wrong, hence m is a prime number.

Question 2(a) Find the greatest common divisor (GCD) in J[i], the ring of Gaussian integers of (i) 3 + 4i and 4 - 3i (ii) 11 + 7i and 18 - i.

Solution. (i) 4 - 3i = (-i)(3 + 4i), and -i is a unit in J[i] as i(-i) = 1. It follows that 4-3i and 3+4i are associates of each other. Thus the GCD of 4-3i and 3+4i can be taken to be either of them.

(ii) N(11+7i) = (11+7i)(11-7i) = 170, N(18-i) = 325. Since (170, 325) = 5, we can find integers x, y such that 170x + 325y = 5, or

$$(11+7i)[(11-7i)x] + (18-i)[(18+i)y] = 5$$

showing that if α divides 11 + 7i, 18 - i in J[i], then α divides 5. Therefore the GCD of

Now $\frac{11+7i}{2+i} = \frac{(11+7i)(2-i)}{5} = \frac{29}{5} + \frac{3}{5}i$. Thus $2+i \not| 11+7i$. $\frac{11+7i}{2-i} = \frac{(11+7i)(2+i)}{5} = 3+5i$. Thus $2-i \mid 11+7i$. $\frac{18-i}{2-i} = \frac{(18-i)(2+i)}{5} = \frac{37}{5} + \frac{16}{5}i$, so $2-i \not| 18-i$.

Thus the GCD of 11 + 7i and 18 - i is 1.

Note: We could have got this by Euclid's Algorithm also.

$$18 - i = (11 + 7i) + 7 - 8i \quad N(7 - 8i) < N(11 + 7i)$$

$$11 + 7i = (7 - 8i)i + 3 \qquad N(3) < N(7 - 8i)$$

$$7 - 8i = (2 - 3i)3 + (1 + i) \qquad N(1 + i) < N(3)$$

$$3 = (1 + i)(1 - i) + 1 \qquad N(1) < N(1 + i)$$

Thus the GCD of 11 + 7i and 18 - i is 1.

2For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Question 2(b) Show that every maximal ideal of a commutative ring R with unit element is a prime ideal.

Solution. Let M be a maximal ideal. Let $ab \equiv 0 \mod M$, i.e. $ab \in M$. Suppose that $a \notin M$ i.e. $a \notin 0 \mod M$. We shall show that $b \equiv 0 \mod M$, proving that M is a prime ideal. Consider $\langle M, a \rangle$, the ideal generated by M and a. Clearly $M \subseteq \langle M, a \rangle$ and $M \neq \langle M, a \rangle$ as $a \notin M$, therefore $\langle M, a \rangle = R$ as M is maximal. Thus $e \in \langle M, a \rangle$, where e is the unit element of R. Thus e = m + xa where $m \in M, x \in R$, so b = mb + xab. $mb \in M, xab \in M$ because $ab \in M$. Hence $mb + xab = b \in M$, which was to be proved, showing that M is a prime ideal.

Remark. The converse of the above statement is not true. Let $R = \mathbb{Z}[x], P = \langle 2 \rangle$, the ideal generated by 2, then P is prime but not maximal — in fact $\langle 2 \rangle \subsetneq \langle 2, x \rangle \subsetneq R$.

Question 2(c) The field K is an extension of the field F. If $\alpha, \beta \in K$ are both algebraic over F, show that $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ (if $\beta \neq 0$) are all algebraic over F.

Solution. Let p(x) be the minimal polynomial of α over F, then $F[x]/\langle p(x)\rangle \simeq F[\alpha]$, the homomorphism from F[x] to $F[\alpha]$ being $f(x) = f(\alpha)$ with kernel $\langle p(x) \rangle$. Thus $F[\alpha] = F(\alpha)$ (the smallest field containing F and α in K). If deg p(x) = n, then $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over F and generate $F(\alpha)$. Hence $(F(\alpha) : F) = n \Rightarrow$ if $\gamma \in F(\alpha), \gamma$ is algebraic over F as $1, \gamma, \ldots, \gamma^n$ are linearly dependent over F, so γ is a root of a polynomial of degree $\leq n$.

Now β being algebraic over F, is algebraic over $F(\alpha) \Rightarrow F(\alpha,\beta)$ is a finite extension of $F(\alpha)$, and $(F(\alpha,\beta):F(\alpha)) =$ degree of the minimal polynomial of β over $F(\alpha) \leq$ degree of the minimal polynomial of β over F. Since $(F(\alpha,\beta):F) = (F(\alpha,\beta):F(\alpha))(F(\alpha):F)$ (see question 2(c) of 1993), it follows that $F(\alpha,\beta)$ is an algebraic extension over F. In fact if $(F(\alpha,\beta):F) = m$ and $\zeta \in F(\alpha,\beta)$, then $1, \zeta, \zeta^2, \ldots, \zeta^m$ are linearly dependent, so ζ is a root of a polynomial of degree $\leq m$. Thus $\alpha \pm \beta, \alpha\beta, \alpha/\beta$, being elements of $F(\alpha,\beta)$ are all algebraic over F.