UPSC Civil Services Main 1992 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) If H is a cyclic normal subgroup of a group G, then show that every subgroup of H is a normal subgroup of G.

Solution. Let K be a normal subgroup of H. Let $H=\langle a\rangle$, and let $K=\left\langle a^{r}\right\rangle$, where r is the least positive integer such that $a^{r} \in K$.

Then $k \in K \Rightarrow k=\left(a^{r}\right)^{m}$ for some m.

$$
g k g^{-1}=g\left(a^{r}\right)^{m} g=\underbrace{g a^{m} g \cdot g a^{m} g \ldots g a^{m} g}_{r \text { times }}
$$

Now H is normal in G, so $g a^{m} g^{-1} \in H \Rightarrow g a^{m} g^{-1}=a^{t}$ for some t. Thus $g k g^{-1}=\left(a^{r}\right)^{t}=$ $\left(a^{r}\right)^{t} \Rightarrow g k g^{-1} \in K$. Thus K is normal in G.

Note: Cyclic subgroups need not be normal. $G=S_{3}, H=\{I,(1,2)\}$ is cyclic but not normal in S_{3}.

Question 1(b) Show that a group of order 30 is not simple.
Solution. $o(G)=3 \cdot 2 \cdot 5$.
$n_{5}=$ number of Sylow groups of order 5 is 1 or 6 because $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 30$.
$n_{3}=$ number of Sylow groups of order 3 is 1 or 10 because $n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 30$.
If G has 6 Sylow groups of order 5 , then G has 24 elements of order 5, because if H and K are two subgroups of order 5 , then $H \cap K\{e\}$ when $H \neq K$. Thus each Sylow subgroup of order 5 gives rise to 4 distinct elements of order 5 .

If G has 10 subgroups of order 3, then G has 20 elements of order 3 . Thus either $n_{3}=1$ or $n_{5}=1$. So G has a unique Sylow subgroup of order 3 or 5 , which has to be a normal subgroup of G. Thus G is not simple.

Note that $n_{5}>1, n_{3}>1$ means that G must have at least 45 elements.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(c) Let p be the smallest prime factor of the order of a group G, then prove that any subgroup of index p is normal in G.

Solution. Let $G / H=\left\{x_{1} H, x_{2} H, \ldots, x_{p} H\right\}$. For any $x \in G$ consider the mapping π_{x} : $G / H \longrightarrow G / H$ defined by $\pi_{x}\left(x_{j} H\right)=x x_{j} H=x_{k} H$ for some $k, 1 \leq k \leq p$. Clearly π_{x} is one-one and therefore gives rise to a permutation on p symbols. Let S_{p} denote the symmetric group on p symbold. Define $\phi: G \longrightarrow S_{p}$ by $\phi(x)=\pi_{x}$. Then ϕ is a homomorphism as

$$
\pi_{x y}\left(x_{j} H\right)=x y\left(x_{j}(H)\right)=x\left(y x_{j} H\right)=\pi_{x}\left(\pi_{y}\left(x_{j} H\right) \Rightarrow \phi(x y)=\phi(x) \phi(y)\right.
$$

Thus by the fundamental theorem of homomorphisms G / K is isomorphic to a subgroup of S_{p}, where K is the kernel of ϕ.
$K \subseteq H$. Proof: Let $x \in K$. Then π_{x} is the identity permutation in S_{p} i.e. $\pi_{x}\left(x_{j} H\right)=$ $x x_{j} H=x_{j} H$ for every $j, 1 \leq j \leq p$. Let x_{r} be such that $x_{r} H=H$, such an x_{r} exists then $x H=x x_{r} H=x_{r} H=H \Rightarrow x \in H$. Thus $K \subseteq H$.
$(G: K)=(G: H)(H: K)$ - This follows immediately from $(G: K)=o(G) / o(K)$. (Note that all groups are of finite order here. This statement also holds for groups of infinite order).

Let $(H: K)=r$. Then $(G: K)=p r$ and therefore $p r \mid p!$, because G / K is isomorphic to a subgroup of S_{p}, so order of $G / K=(G: K)$ divides $o\left(S_{p}\right)=p$!. Thus $r \mid(p-1)$!. But r divides $o(G)$ also, because K is a subgroup of H which is a subgroup of G. Consequently r divides $((p-1)!, o(G))$. But $((p-1)!, o(G))=1$ as p is the smallest prime factor of $o(G)$. Thus $r=1 \Rightarrow K=H$. Hence H being a kernel of a homomorphism $\phi: G \longrightarrow S_{p}$ is a normal subgroup of G.

Remark: We don't need it in the above proof, but it is worth noticing that

$$
K=\cap_{a \in G} a H a^{-1}
$$

For $x \in K \Leftrightarrow x x_{j} H=x_{j} H \quad \forall j .1 \leq j \leq p$

$$
\Leftrightarrow \quad x \in x_{j} H x_{j}^{-1} \quad \forall j .1 \leq j \leq p
$$

$$
\Leftrightarrow \quad x \in a H a^{-1} \quad \forall a \in G
$$

(Note that $a H a^{-1}=x_{j} H x_{j}^{-1}$ if $a=x_{j} H$).
Proof of $(G: K)=(G: H)(H: K)$. Let $G / H=\left\{x_{1} H, x_{2} H, \ldots, x_{n} H\right\}$ and $H / K=$ $\left\{y_{1} K, \ldots, y_{m} K\right\}$. Then we will show that $G / K=\left\{x_{i} y_{j} K \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

$$
\begin{aligned}
x_{i} y_{j} \equiv x_{k} y_{l} \quad \bmod K & \Rightarrow y_{l}^{-1} x_{k}^{-1} x_{i} y_{j} \in K \\
& \Rightarrow y_{l}^{-1} x_{k}^{-1} x_{i} y_{j} \in H \\
& \Rightarrow x_{k}^{-1} x_{i} \in H \quad\left(\because y_{l}, y_{j} \in H\right) \\
& \Rightarrow x_{k} H=x_{i} H \Rightarrow k=i \\
& \Rightarrow y_{l}^{-1} y_{j} \in K \\
& \Rightarrow y_{l} K=y_{j} K \Rightarrow l=k
\end{aligned}
$$

Given $x \in G, x H=x_{j} H$ for some $j, 1 \leq j \leq n$. Since $x_{j}^{-1} x \in H, x_{j}^{-1} x K=y_{k} K$ for some $k, 1 \leq k \leq m$. Therefore $x K=x_{j} y_{k} K$, so $\left\{x_{i} y_{j} K \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a complete system of representation of cosets of G / K. This implies $(G: K)=m n=(G: H)(H: K)$.

For more information log on www.brijrbedu.org.

Question 2(a) If R is a unique factorization domain, then prove that any $f \in R[x]$ is an irreducible element of $R[x]$ if and only if either f is an irreducible element of R or f is an irreducible polynomial in $R[x]$.

Solution. We first observe that units of R and $R[x]$ are the same - let $f, g \in R[x]$ be such that $f g=1$ then $\operatorname{deg} f+\operatorname{deg} g=0 \Rightarrow \operatorname{deg} f=0, \operatorname{deg} g=0 \Rightarrow f, g \in R$ and both are units in R.

If f is an irreducible element of R, then f is an irreducible element of $R[x]$ - if $f=g h$ then $\operatorname{deg} g+\operatorname{deg} h=0 \Rightarrow \operatorname{deg} g=0, \operatorname{deg} h=0 \Rightarrow g, h \in R$, but since f is irreducible in R, either g is a unit in R or f is a unit in R, and therefore in $R[x]$.

Conversely, if f is an irreducible element in $R[x]$ and $f \in R$, then f has to be irreducible in R also, because if $f=g h$ is a proper factorization of $f \in R$, then this would be a proper factorization of f in $R[x]$ also, because units of R and $R[x]$ are the same, so g, h cannot be units in $R[x]$.

Now let $f \in R[x]$ be an irreducible element of $R[x]$ and $f \notin R$, then f is an irreducible polynomial. But an irreducible polynomial need not be an irreducible element of $R[x]$. For example, $2 x^{2}+2$ is an irreducible polynomial in $\mathbb{Z}[x]$ but is not an irreducible element. Thus the correct question would be $-f \in R[x]$ is an irreducible element of $R[x]$ if and only if either f is an irreducible element of R or f is an irreducible primitive polynomial in $R[x]$.

Question 2(b) Prove that the polynomials $x^{2}+1$ and $x^{2}+x+4$ are irreducible over F, the field of integers modulo 11. Prove that $F[x] /\left\langle x^{2}+1\right\rangle$ and $F[x] /\left\langle x^{2}+x+4\right\rangle$ are isomorphic fields each having 121 elements.

Solution. For irreducibility of the polynomial $x^{2}+x+4$ see question 2(c), 1996.
If possible let $x^{2}+1 \equiv(x+a)(x+b) \bmod 11$ where a, b are integers. This implies that $a+b \equiv 0 \bmod 11, a b \equiv 1 \bmod 11 \Rightarrow a^{2} \equiv-1 \bmod 11$, which is not possible, since the only quadratic residues of 11 are $0,1,4,9,5$ and 3 . Thus $x^{2}+1$ has no linear factors modulo 11 i.e. $x^{2}+1$ is irreducible modulo 11 .

Let $p(x)$ be an irreducible polynomial over a field F and α be a root of $p(x)$ in some extension of F. Then the field $F[x] /\langle p(x)\rangle$ is isomorphic to $F[\alpha]$. Proof: Consider the mapping $\rho: F[x] \longrightarrow F[\alpha]$ defined by $\rho(f(x))=f(\alpha)$. It can be easily seen that ρ is a homomorphism, onto with kernel $\langle p(x)\rangle$. If $\operatorname{deg} p(x)=n$, then $(F[\alpha]: F)=n$. Clearly $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are independent over F, otherwise α will be the root of a polynomial of degree $<n$. Let $\beta \in F(\alpha)=F[\alpha]$, then $\beta=a_{0}+a_{1} \alpha+\ldots a_{r} \alpha^{r}$, let $f(x)=a_{0}+a_{1} x+\ldots+a_{r} x^{r}$, then there exist $q(x), s(x)$ such that $f(x)=q(x) p(x)+r(x)$ where $s(x)=0$ or $\operatorname{deg} s(x)<$ $\operatorname{deg} p(x)$. Thus $\beta=f(\alpha)=s(\alpha)$ as $p(\alpha)=0$, showing that β is a linear combination of $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$.

In case $p(x)=x^{2}+1, F=$ field of integers modulo 11 , then $F[x] /\left\langle x^{2}+1\right\rangle \simeq F[\alpha]$ with $\alpha^{2}+1=0$. Now $(F[\alpha]=F(\alpha): F)=2$ with $1, \alpha$ as its basis. Thus $F(\alpha)=\left\{a_{0}+a_{1} \alpha \mid\right.$ $\left.a_{0}, a_{1} \in F\right\}$. Clearly $F(\alpha)$ has 121 elements. Similarly, $F[x] /\left\langle x^{2}+x+4\right\rangle$ has 121 elements.

Consider the mapping $\sigma: F[x] \longrightarrow F[x]$ defined by $\sigma(x)=x-5$ and $\sigma(a)=a$ for $a \in F$. It is obvious that σ is an isomorphism. Now $\sigma\left(x^{2}+1\right)=(x-5)^{2}+1=x^{2}-10 x+26 \equiv$
$x^{2}+x+4 \bmod 11$. This shows that σ gives rise to a map from $K_{1}=F[x] /\left\langle x^{2}+1\right\rangle$ to $K_{2}=F[x] /\left\langle x^{2}+x+4\right\rangle$. Any typical element of K_{1} is of the form $a_{0}+a_{1} x+\left\langle x^{2}+1\right\rangle$ where $a_{0}, a_{1} \in F$. Then $\sigma\left(a_{0}+a_{1} x+\left\langle x^{2}+1\right\rangle\right)=a_{0}+a_{1}(x-5)+\left\langle x^{2}+x+4\right\rangle$.

We now check that σ is an isomorphism. We write $\overline{\alpha x+\beta}=\alpha+\beta x+\left\langle x^{2}+1\right\rangle$. Then

$$
\begin{aligned}
\sigma(\overline{\alpha x+\beta}+\overline{\gamma x+\delta}) & =\sigma(\overline{(\alpha+\gamma) x+\beta+\delta}) \\
& =(\alpha+\gamma) x+\beta+\delta-5\left((\alpha+\gamma)+\left\langle x^{2}+x+4\right\rangle\right. \\
& =\sigma(\overline{\alpha x+\beta})+\sigma(\overline{\gamma x+\delta}) \\
\sigma(\overline{(\alpha x+\beta)(\gamma x+\delta)}) & =\sigma\left(\overline{\alpha \gamma x^{2}+(\alpha \delta+\beta \gamma) x+\beta \delta}\right) \\
& =\sigma\left(\overline{(\alpha \delta+\beta \gamma) x+\beta \delta-\alpha \gamma)} \text { as } \alpha \gamma x^{2} \equiv-\alpha \gamma \quad \bmod x^{2}+1\right. \\
& =(\alpha \delta+\beta \gamma) x-5(\alpha \delta+\beta \gamma)+\beta \delta-\alpha \gamma+\left\langle x^{2}+x+4\right\rangle
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left(\alpha x+\beta-5 \alpha+\left\langle x^{2}+x+4\right\rangle\right)\left(\gamma x+\delta-5 \gamma+\left\langle x^{2}+x+4\right\rangle\right) \\
= & \alpha \gamma x^{2}+\alpha \delta x-5 \alpha \gamma x+\beta \gamma x+\beta \delta-5 \beta \gamma-4 \alpha \gamma x-5 \alpha \delta+25 \gamma \alpha+\left\langle x^{2}+x+4\right\rangle \\
= & \alpha \gamma(-x-4)+\alpha \delta x-5 \alpha \gamma x+\beta \gamma x+\beta \delta-5 \beta \gamma-4 \alpha \gamma x-5 \alpha \delta+3 \gamma \alpha+\left\langle x^{2}+x+4\right\rangle \\
= & x[-\alpha \gamma+\alpha \delta+\beta \gamma-5 \alpha \gamma-5 \alpha \gamma]+\beta \delta-5 \beta \gamma-5 \alpha \delta-\alpha \gamma+\left\langle x^{2}+x+4\right\rangle \\
\equiv & x[\alpha \delta+\beta \gamma]+\beta \delta-5 \beta \gamma-5 \alpha \delta-\alpha \gamma+\left\langle x^{2}+x+4\right\rangle \quad \bmod 11
\end{aligned}
$$

Thus $\sigma(\overline{(\alpha x+\beta)(\gamma x+\delta)})=\sigma(\overline{(\alpha x+\beta)}) \sigma(\overline{(\gamma x+\delta)})$ showing that σ is a homomorphism.
σ is $1-1$: The kernel of σ is an ideal of K_{1}, but K_{1} is a field, therefore the only ideals of K_{1} are the trivial ideal $\langle 0\rangle$ and K_{1}. Since σ is not a zero map, it follows that the kernel of σ is $\langle 0\rangle$, thus σ is $1-1$.
σ is onto: Since K_{1} and K_{2} have 121 elements each, and sigma is one-one, $\sigma\left(K_{1}\right)=K_{2}$. Thus σ is an isomorphism from K_{1} to K_{2}.

Question 2(c) Find the degree of the splitting field of $f(x)=x^{5}-3 x^{3}+x^{2}-3$ over \mathbb{Q}, the field of rationals.

Solution. $f(x)$ has -1 as a root, so $f(x)=(x+1)\left(x^{4}-x^{3}-2 x^{2}+3 x-3\right)$. It does not have any other linear factors as $-1,1,3,-3$ are not roots of $x^{4}-x^{3}-2 x^{2}+3 x+3$.

Let $x^{4}-x^{3}-2 x^{2}+3 x+3=\left(x^{2}+b x+c\right)\left(x^{2}+d x+e\right)$, where $b, c, d, e \in \mathbb{Z}$. Then $b+d=-1, c+e+b d=-2, b e+d c=3, c e=-3$. From $c e=-3$, we get $c=-1, e=3$ or $c=1, e=-3$ (the other choices are symmetric). Using $c=1, e=-3$, we get $-3 b+d=3$, and now from $b+d=-1$, we get $b=-1, d=0$. Thus we get

$$
f(x)=(x+1)\left(x^{2}-x+1\right)\left(x^{2}-3\right)
$$

For more information log on www.brijrbedu.org.

Consequently, the splitting field of $f(x)$ over \mathbb{Q} is the smallest field containing $\pm \sqrt{3}, \frac{1 \pm i \sqrt{3}}{2}$, namely the roots of $x^{2}-3$ and $x^{2}-x+1$.

Thus $\mathbb{Q}(\sqrt{3}, i)$ is the required splitting field. Since $\mathbb{Q}(\sqrt{3}, i) \supseteq \mathbb{Q}(\sqrt{3}) \supseteq \mathbb{Q}$, and $(\mathbb{Q}(\sqrt{3})$: $\mathbb{Q})=2$ and $(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}(\sqrt{3}))=2$ it follows that the splitting field $\mathbb{Q}(\sqrt{3}, i)$ of $f(x)$ has degree 4 over \mathbb{Q}.

