UPSC Civil Services Main 1992 - Mathematics Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) If H is a cyclic normal subgroup of a group G, then show that every subgroup of H is a normal subgroup of G.

Solution. Let K be a normal subgroup of H. Let $H = \langle a \rangle$, and let $K = \langle a^r \rangle$, where r is the least positive integer such that $a^r \in K$.

Then $k \in K \Rightarrow k = (a^r)^m$ for some m.

$$gkg^{-1} = g(a^r)^m g = \underbrace{ga^m g \cdot ga^m g \dots ga^m g}_{r \text{ times}}$$

Now H is normal in G, so $ga^mg^{-1} \in H \Rightarrow ga^mg^{-1} = a^t$ for some t. Thus $gkg^{-1} = (a^r)^t = (a^r)^t \Rightarrow gkg^{-1} \in K$. Thus K is normal in G.

Note: Cyclic subgroups need not be normal. $G = S_3, H = \{I, (1, 2)\}$ is cyclic but not normal in S_3 .

Question 1(b) Show that a group of order 30 is not simple.

Solution. $o(G) = 3 \cdot 2 \cdot 5$.

 $n_5 =$ number of Sylow groups of order 5 is 1 or 6 because $n_5 \equiv 1 \mod 5$ and $n_5 \mid 30$.

 $n_3 =$ number of Sylow groups of order 3 is 1 or 10 because $n_3 \equiv 1 \mod 3$ and $n_3 \mid 30$.

If G has 6 Sylow groups of order 5, then G has 24 elements of order 5, because if H and K are two subgroups of order 5, then $H \cap K$ {e} when $H \neq K$. Thus each Sylow subgroup of order 5 gives rise to 4 distinct elements of order 5.

If G has 10 subgroups of order 3, then G has 20 elements of order 3. Thus either $n_3 = 1$ or $n_5 = 1$. So G has a unique Sylow subgroup of order 3 or 5, which has to be a normal subgroup of G. Thus G is not simple.

Note that $n_5 > 1, n_3 > 1$ means that G must have at least 45 elements.

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Question 1(c) Let p be the smallest prime factor of the order of a group G, then prove that any subgroup of index p is normal in G.

Solution. Let $G/H = \{x_1H, x_2H, \ldots, x_pH\}$. For any $x \in G$ consider the mapping $\pi_x : G/H \longrightarrow G/H$ defined by $\pi_x(x_jH) = xx_jH = x_kH$ for some $k, 1 \leq k \leq p$. Clearly π_x is one-one and therefore gives rise to a permutation on p symbols. Let S_p denote the symmetric group on p symbold. Define $\phi : G \longrightarrow S_p$ by $\phi(x) = \pi_x$. Then ϕ is a homomorphism as

$$\pi_{xy}(x_jH) = xy(x_j(H)) = x(yx_jH) = \pi_x(\pi_y(x_jH) \implies \phi(xy) = \phi(x)\phi(y)$$

Thus by the fundamental theorem of homomorphisms G/K is isomorphic to a subgroup of S_p , where K is the kernel of ϕ .

 $K \subseteq H$. Proof: Let $x \in K$. Then π_x is the identity permutation in S_p i.e. $\pi_x(x_jH) = xx_jH = x_jH$ for every $j, 1 \leq j \leq p$. Let x_r be such that $x_rH = H$, such an x_r exists then $xH = xx_rH = x_rH = H \Rightarrow x \in H$. Thus $K \subseteq H$.

(G:K) = (G:H)(H:K) — This follows immediately from (G:K) = o(G)/o(K). (Note that all groups are of finite order here. This statement also holds for groups of infinite order).

Let (H:K) = r. Then (G:K) = pr and therefore $pr \mid p!$, because G/K is isomorphic to a subgroup of S_p , so order of G/K = (G:K) divides $o(S_p) = p!$. Thus $r \mid (p-1)!$. But r divides o(G) also, because K is a subgroup of H which is a subgroup of G. Consequently r divides ((p-1)!, o(G)). But ((p-1)!, o(G)) = 1 as p is the smallest prime factor of o(G). Thus $r = 1 \Rightarrow K = H$. Hence H being a kernel of a homomorphism $\phi : G \longrightarrow S_p$ is a normal subgroup of G.

Remark: We don't need it in the above proof, but it is worth noticing that

$$K = \bigcap_{a \in G} a H a^{-1}$$

For
$$x \in K \Leftrightarrow xx_jH = x_jH \quad \forall j.1 \leq j \leq p$$

 $\Leftrightarrow x \in x_jHx_j^{-1} \quad \forall j.1 \leq j \leq p$
 $\Leftrightarrow x \in aHa^{-1} \quad \forall a \in G$
(Note that $aHa^{-1} = x_jHx_j^{-1}$ if $a = x_jH$)

(Note that $aHa^{-1} = x_jHx_j^{-1}$ if $a = x_jH$).

Proof of (G : K) = (G : H)(H : K). Let $G/H = \{x_1H, x_2H, \dots, x_nH\}$ and $H/K = \{y_1K, \dots, y_mK\}$. Then we will show that $G/K = \{x_iy_jK \mid 1 \le i \le m, 1 \le j \le n\}$.

$$\begin{aligned} x_i y_j &\equiv x_k y_l \mod K \implies y_l^{-1} x_k^{-1} x_i y_j \in K \\ &\Rightarrow y_l^{-1} x_k^{-1} x_i y_j \in H \\ &\Rightarrow x_k^{-1} x_i \in H \quad (\because y_l, y_j \in H) \\ &\Rightarrow x_k H = x_i H \Rightarrow k = i \\ &\Rightarrow y_l^{-1} y_j \in K \\ &\Rightarrow y_l K = y_j K \Rightarrow l = k \end{aligned}$$

Given $x \in G$, $xH = x_jH$ for some $j, 1 \leq j \leq n$. Since $x_j^{-1}x \in H$, $x_j^{-1}xK = y_kK$ for some $k, 1 \leq k \leq m$. Therefore $xK = x_jy_kK$, so $\{x_iy_jK \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ is a complete system of representation of cosets of G/K. This implies (G:K) = mn = (G:H)(H:K).

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

Question 2(a) If R is a unique factorization domain, then prove that any $f \in R[x]$ is an irreducible element of R[x] if and only if either f is an irreducible element of R or f is an irreducible polynomial in R[x].

Solution. We first observe that units of R and R[x] are the same — let $f, g \in R[x]$ be such that fg = 1 then deg $f + \text{deg } g = 0 \Rightarrow \text{deg } f = 0$, deg $g = 0 \Rightarrow f, g \in R$ and both are units in R.

If f is an irreducible element of R, then f is an irreducible element of R[x] — if f = ghthen deg $g + \text{deg } h = 0 \Rightarrow \text{deg } g = 0$, deg $h = 0 \Rightarrow g, h \in R$, but since f is irreducible in R, either g is a unit in R or f is a unit in R, and therefore in R[x].

Conversely, if f is an irreducible element in R[x] and $f \in R$, then f has to be irreducible in R also, because if f = gh is a proper factorization of $f \in R$, then this would be a proper factorization of f in R[x] also, because units of R and R[x] are the same, so g, h cannot be units in R[x].

Now let $f \in R[x]$ be an irreducible element of R[x] and $f \notin R$, then f is an irreducible polynomial. But an irreducible polynomial need not be an irreducible element of R[x]. For example, $2x^2 + 2$ is an irreducible polynomial in $\mathbb{Z}[x]$ but is not an irreducible element. Thus the correct question would be $-f \in R[x]$ is an irreducible element of R[x] if and only if either f is an irreducible element of R or f is an irreducible *primitive* polynomial in R[x].

Question 2(b) Prove that the polynomials $x^2 + 1$ and $x^2 + x + 4$ are irreducible over F, the field of integers modulo 11. Prove that $F[x]/\langle x^2 + 1 \rangle$ and $F[x]/\langle x^2 + x + 4 \rangle$ are isomorphic fields each having 121 elements.

Solution. For irreducibility of the polynomial $x^2 + x + 4$ see question 2(c), 1996.

If possible let $x^2 + 1 \equiv (x + a)(x + b) \mod 11$ where a, b are integers. This implies that $a + b \equiv 0 \mod 11, ab \equiv 1 \mod 11 \Rightarrow a^2 \equiv -1 \mod 11$, which is not possible, since the only quadratic residues of 11 are 0, 1, 4, 9, 5 and 3. Thus $x^2 + 1$ has no linear factors modulo 11 i.e. $x^2 + 1$ is irreducible modulo 11.

Let p(x) be an irreducible polynomial over a field F and α be a root of p(x) in some extension of F. Then the field $F[x]/\langle p(x)\rangle$ is isomorphic to $F[\alpha]$. Proof: Consider the mapping $\rho : F[x] \longrightarrow F[\alpha]$ defined by $\rho(f(x)) = f(\alpha)$. It can be easily seen that ρ is a homomorphism, onto with kernel $\langle p(x) \rangle$. If deg p(x) = n, then $(F[\alpha] : F) = n$. Clearly $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are independent over F, otherwise α will be the root of a polynomial of degree < n. Let $\beta \in F(\alpha) = F[\alpha]$, then $\beta = a_0 + a_1\alpha + \ldots a_r\alpha^r$, let $f(x) = a_0 + a_1x + \ldots + a_rx^r$, then there exist q(x), s(x) such that f(x) = q(x)p(x) + r(x) where s(x) = 0 or deg s(x) <deg p(x). Thus $\beta = f(\alpha) = s(\alpha)$ as $p(\alpha) = 0$, showing that β is a linear combination of $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$.

In case $p(x) = x^2 + 1$, F = field of integers modulo 11, then $F[x]/\langle x^2 + 1 \rangle \simeq F[\alpha]$ with $\alpha^2 + 1 = 0$. Now $(F[\alpha] = F(\alpha) : F) = 2$ with 1, α as its basis. Thus $F(\alpha) = \{a_0 + a_1\alpha \mid a_0, a_1 \in F\}$. Clearly $F(\alpha)$ has 121 elements. Similarly, $F[x]/\langle x^2 + x + 4 \rangle$ has 121 elements.

Consider the mapping $\sigma : F[x] \longrightarrow F[x]$ defined by $\sigma(x) = x - 5$ and $\sigma(a) = a$ for $a \in F$. It is obvious that σ is an isomorphism. Now $\sigma(x^2 + 1) = (x - 5)^2 + 1 = x^2 - 10x + 26 \equiv x^2 - 10x + 20 = x^2 - 10x + 20 = x^2 - 10x + 10x$

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

 $x^2 + x + 4 \mod 11$. This shows that σ gives rise to a map from $K_1 = F[x]/\langle x^2 + 1 \rangle$ to $K_2 = F[x]/\langle x^2 + x + 4 \rangle$. Any typical element of K_1 is of the form $a_0 + a_1x + \langle x^2 + 1 \rangle$ where $a_0, a_1 \in F$. Then $\sigma(a_0 + a_1x + \langle x^2 + 1 \rangle) = a_0 + a_1(x - 5) + \langle x^2 + x + 4 \rangle$.

We now check that σ is an isomorphism. We write $\overline{\alpha x + \beta} = \alpha + \beta x + \langle x^2 + 1 \rangle$. Then

$$\sigma(\overline{\alpha x + \beta} + \overline{\gamma x + \delta}) = \sigma(\overline{(\alpha + \gamma)x + \beta + \delta})$$

= $(\alpha + \gamma)x + \beta + \delta - 5((\alpha + \gamma) + \langle x^2 + x + 4 \rangle)$
= $\sigma(\overline{\alpha x + \beta}) + \sigma(\overline{\gamma x + \delta})$

$$\sigma(\overline{(\alpha x + \beta)(\gamma x + \delta)}) = \sigma(\overline{\alpha \gamma x^2 + (\alpha \delta + \beta \gamma)x + \beta \delta})$$

= $\sigma(\overline{(\alpha \delta + \beta \gamma)x + \beta \delta - \alpha \gamma})$ as $\alpha \gamma x^2 \equiv -\alpha \gamma \mod x^2 + 1$
= $(\alpha \delta + \beta \gamma)x - 5(\alpha \delta + \beta \gamma) + \beta \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$

Now

$$(\alpha x + \beta - 5\alpha + \langle x^2 + x + 4 \rangle)(\gamma x + \delta - 5\gamma + \langle x^2 + x + 4 \rangle)$$

$$= \alpha \gamma x^2 + \alpha \delta x - 5\alpha \gamma x + \beta \gamma x + \beta \delta - 5\beta \gamma - 4\alpha \gamma x - 5\alpha \delta + 25\gamma \alpha + \langle x^2 + x + 4 \rangle$$

$$= \alpha \gamma (-x - 4) + \alpha \delta x - 5\alpha \gamma x + \beta \gamma x + \beta \delta - 5\beta \gamma - 4\alpha \gamma x - 5\alpha \delta + 3\gamma \alpha + \langle x^2 + x + 4 \rangle$$

$$= x[-\alpha \gamma + \alpha \delta + \beta \gamma - 5\alpha \gamma - 5\alpha \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

$$= x[\alpha \delta + \beta \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

$$= x[\alpha \delta + \beta \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

$$= x[\alpha \delta + \beta \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

$$= x[\alpha \delta + \beta \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

$$= x[\alpha \delta + \beta \gamma] + \beta \delta - 5\beta \gamma - 5\alpha \delta - \alpha \gamma + \langle x^2 + x + 4 \rangle$$

Thus $\sigma(\overline{(\alpha x + \beta)(\gamma x + \delta)}) = \sigma(\overline{(\alpha x + \beta)})\sigma(\overline{(\gamma x + \delta)})$ showing that σ is a homomorphism.

 σ is 1-1: The kernel of σ is an ideal of K_1 , but K_1 is a field, therefore the only ideals of K_1 are the trivial ideal $\langle 0 \rangle$ and K_1 . Since σ is not a zero map, it follows that the kernel of σ is $\langle 0 \rangle$, thus σ is 1-1.

 σ is onto: Since K_1 and K_2 have 121 elements each, and sigma is one-one, $\sigma(K_1) = K_2$. Thus σ is an isomorphism from K_1 to K_2 .

Question 2(c) Find the degree of the splitting field of $f(x) = x^5 - 3x^3 + x^2 - 3$ over \mathbb{Q} , the field of rationals.

Solution. f(x) has -1 as a root, so $f(x) = (x+1)(x^4 - x^3 - 2x^2 + 3x - 3)$. It does not have any other linear factors as -1, 1, 3, -3 are not roots of $x^4 - x^3 - 2x^2 + 3x + 3$.

Let $x^4 - x^3 - 2x^2 + 3x + 3 = (x^2 + bx + c)(x^2 + dx + e)$, where $b, c, d, e \in \mathbb{Z}$. Then b + d = -1, c + e + bd = -2, be + dc = 3, ce = -3. From ce = -3, we get c = -1, e = 3 or c = 1, e = -3 (the other choices are symmetric). Using c = 1, e = -3, we get -3b + d = 3, and now from b + d = -1, we get b = -1, d = 0. Thus we get

$$f(x) = (x+1)(x^2 - x + 1)(x^2 - 3)$$

4

For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Consequently, the splitting field of f(x) over \mathbb{Q} is the smallest field containing $\pm\sqrt{3}, \frac{1\pm i\sqrt{3}}{2}$, namely the roots of $x^2 - 3$ and $x^2 - x + 1$. Thus $\mathbb{Q}(\sqrt{3}, i)$ is the required splitting field. Since $\mathbb{Q}(\sqrt{3}, i) \supseteq \mathbb{Q}(\sqrt{3}) \supseteq \mathbb{Q}$, and $(\mathbb{Q}(\sqrt{3}) : \mathbb{Q}) = 2$ and $(\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}(\sqrt{3})) = 2$ it follows that the splitting field $\mathbb{Q}(\sqrt{3}, i)$ of f(x) has degree 4 over \mathbb{Q} .