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Question 1(a) If H is a cyclic normal subgroup of a group G, then show that every subgroup
of H is a normal subgroup of G.

Solution. Let K be a normal subgroup of H. Let H = 〈a〉, and let K = 〈ar〉, where r is
the least positive integer such that ar ∈ K.

Then k ∈ K ⇒ k = (ar)m for some m.

gkg−1 = g(ar)mg = gamg · gamg . . . gamg︸ ︷︷ ︸
r times

Now H is normal in G, so gamg−1 ∈ H ⇒ gamg−1 = at for some t. Thus gkg−1 = (ar)t =
(ar)t ⇒ gkg−1 ∈ K. Thus K is normal in G.

Note: Cyclic subgroups need not be normal. G = S3, H = {I, (1, 2)} is cyclic but not
normal in S3.

Question 1(b) Show that a group of order 30 is not simple.

Solution. o(G) = 3 · 2 · 5.
n5 = number of Sylow groups of order 5 is 1 or 6 because n5 ≡ 1 mod 5 and n5 | 30.
n3 = number of Sylow groups of order 3 is 1 or 10 because n3 ≡ 1 mod 3 and n3 | 30.
If G has 6 Sylow groups of order 5, then G has 24 elements of order 5, because if H and

K are two subgroups of order 5, then H ∩K {e} when H 6= K. Thus each Sylow subgroup
of order 5 gives rise to 4 distinct elements of order 5.

If G has 10 subgroups of order 3, then G has 20 elements of order 3. Thus either n3 = 1
or n5 = 1. So G has a unique Sylow subgroup of order 3 or 5, which has to be a normal
subgroup of G. Thus G is not simple.

Note that n5 > 1, n3 > 1 means that G must have at least 45 elements.
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Question 1(c) Let p be the smallest prime factor of the order of a group G, then prove that
any subgroup of index p is normal in G.

Solution. Let G/H = {x1H, x2H, . . . , xpH}. For any x ∈ G consider the mapping πx :
G/H −→ G/H defined by πx(xjH) = xxjH = xkH for some k, 1 ≤ k ≤ p. Clearly πx is
one-one and therefore gives rise to a permutation on p symbols. Let Sp denote the symmetric
group on p symbold. Define φ : G −→ Sp by φ(x) = πx. Then φ is a homomorphism as

πxy(xjH) = xy(xj(H)) = x(yxjH) = πx(πy(xjH) ⇒ φ(xy) = φ(x)φ(y)

Thus by the fundamental theorem of homomorphisms G/K is isomorphic to a subgroup of
Sp, where K is the kernel of φ.

K ⊆ H. Proof: Let x ∈ K. Then πx is the identity permutation in Sp i.e. πx(xjH) =
xxjH = xjH for every j, 1 ≤ j ≤ p. Let xr be such that xrH = H, such an xr exists then
xH = xxrH = xrH = H ⇒ x ∈ H. Thus K ⊆ H.

(G : K) = (G : H)(H : K) — This follows immediately from (G : K) = o(G)/o(K).
(Note that all groups are of finite order here. This statement also holds for groups of infinite
order).

Let (H : K) = r. Then (G : K) = pr and therefore pr | p!, because G/K is isomorphic
to a subgroup of Sp, so order of G/K = (G : K) divides o(Sp) = p!. Thus r | (p− 1)!. But
r divides o(G) also, because K is a subgroup of H which is a subgroup of G. Consequently
r divides ((p− 1)!, o(G)). But ((p− 1)!, o(G)) = 1 as p is the smallest prime factor of o(G).
Thus r = 1 ⇒ K = H. Hence H being a kernel of a homomorphism φ : G −→ Sp is a
normal subgroup of G.

Remark: We don’t need it in the above proof, but it is worth noticing that

K = ∩a∈GaHa
−1

For x ∈ K ⇔ xxjH = xjH ∀j.1 ≤ j ≤ p
⇔ x ∈ xjHx

−1
j ∀j.1 ≤ j ≤ p

⇔ x ∈ aHa−1 ∀a ∈ G
(Note that aHa−1 = xjHx

−1
j if a = xjH).

Proof of (G : K) = (G : H)(H : K). Let G/H = {x1H, x2H, . . . , xnH} and H/K =
{y1K, . . . , ymK}. Then we will show that G/K = {xiyjK | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

xiyj ≡ xkyl mod K ⇒ y−1
l x−1

k xiyj ∈ K
⇒ y−1

l x−1
k xiyj ∈ H

⇒ x−1
k xi ∈ H (∵ yl, yj ∈ H)

⇒ xkH = xiH ⇒ k = i

⇒ y−1
l yj ∈ K

⇒ ylK = yjK ⇒ l = k

Given x ∈ G, xH = xjH for some j, 1 ≤ j ≤ n. Since x−1
j x ∈ H, x−1

j xK = ykK for some
k, 1 ≤ k ≤ m. Therefore xK = xjykK, so {xiyjK | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a complete
system of representation of cosets of G/K. This implies (G : K) = mn = (G : H)(H : K).
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Question 2(a) If R is a unique factorization domain, then prove that any f ∈ R[x] is an
irreducible element of R[x] if and only if either f is an irreducible element of R or f is an
irreducible polynomial in R[x].

Solution. We first observe that units of R and R[x] are the same — let f, g ∈ R[x] be such
that fg = 1 then deg f + deg g = 0 ⇒ deg f = 0, deg g = 0 ⇒ f, g ∈ R and both are units
in R.

If f is an irreducible element of R, then f is an irreducible element of R[x] — if f = gh
then deg g + deg h = 0 ⇒ deg g = 0, deg h = 0 ⇒ g, h ∈ R, but since f is irreducible in R,
either g is a unit in R or f is a unit in R, and therefore in R[x].

Conversely, if f is an irreducible element in R[x] and f ∈ R, then f has to be irreducible
in R also, because if f = gh is a proper factorization of f ∈ R, then this would be a proper
factorization of f in R[x] also, because units of R and R[x] are the same, so g, h cannot be
units in R[x].

Now let f ∈ R[x] be an irreducible element of R[x] and f 6∈ R, then f is an irreducible
polynomial. But an irreducible polynomial need not be an irreducible element of R[x]. For
example, 2x2 +2 is an irreducible polynomial in Z[x] but is not an irreducible element. Thus
the correct question would be — f ∈ R[x] is an irreducible element of R[x] if and only if
either f is an irreducible element of R or f is an irreducible primitive polynomial in R[x].

Question 2(b) Prove that the polynomials x2 + 1 and x2 +x+ 4 are irreducible over F , the
field of integers modulo 11. Prove that F [x]/〈x2 + 1〉 and F [x]/〈x2 + x+ 4〉 are isomorphic
fields each having 121 elements.

Solution. For irreducibility of the polynomial x2 + x+ 4 see question 2(c), 1996.
If possible let x2 + 1 ≡ (x+ a)(x+ b) mod 11 where a, b are integers. This implies that

a + b ≡ 0 mod 11, ab ≡ 1 mod 11 ⇒ a2 ≡ −1 mod 11, which is not possible, since the
only quadratic residues of 11 are 0, 1, 4, 9, 5 and 3. Thus x2 +1 has no linear factors modulo
11 i.e. x2 + 1 is irreducible modulo 11.

Let p(x) be an irreducible polynomial over a field F and α be a root of p(x) in some
extension of F . Then the field F [x]/〈p(x)〉 is isomorphic to F [α]. Proof: Consider the
mapping ρ : F [x] −→ F [α] defined by ρ(f(x)) = f(α). It can be easily seen that ρ is a
homomorphism, onto with kernel 〈p(x)〉 . If deg p(x) = n, then (F [α] : F ) = n. Clearly
1, α, α2, . . . , αn−1 are independent over F , otherwise α will be the root of a polynomial of
degree < n. Let β ∈ F (α) = F [α], then β = a0+a1α+. . . arα

r, let f(x) = a0+a1x+. . .+arx
r,

then there exist q(x), s(x) such that f(x) = q(x)p(x) + r(x) where s(x) = 0 or deg s(x) <
deg p(x). Thus β = f(α) = s(α) as p(α) = 0, showing that β is a linear combination of
1, α, α2, . . . , αn−1.

In case p(x) = x2 + 1, F = field of integers modulo 11, then F [x]/〈x2 + 1〉 ' F [α] with
α2 + 1 = 0. Now (F [α] = F (α) : F ) = 2 with 1, α as its basis. Thus F (α) = {a0 + a1α |
a0, a1 ∈ F}. Clearly F (α) has 121 elements. Similarly, F [x]/〈x2 + x+ 4〉 has 121 elements.

Consider the mapping σ : F [x] −→ F [x] defined by σ(x) = x−5 and σ(a) = a for a ∈ F .
It is obvious that σ is an isomorphism. Now σ(x2 + 1) = (x − 5)2 + 1 = x2 − 10x + 26 ≡
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x2 + x + 4 mod 11. This shows that σ gives rise to a map from K1 = F [x]/〈x2 + 1〉 to
K2 = F [x]/〈x2 + x+ 4〉 . Any typical element of K1 is of the form a0 +a1x+ 〈x2 + 1〉 where
a0, a1 ∈ F . Then σ(a0 + a1x+ 〈x2 + 1〉 ) = a0 + a1(x− 5) + 〈x2 + x+ 4〉 .

We now check that σ is an isomorphism. We write αx+ β = α + βx+ 〈x2 + 1〉 . Then

σ(αx+ β + γx+ δ) = σ((α + γ)x+ β + δ)

= (α + γ)x+ β + δ − 5((α + γ) + 〈x2 + x+ 4〉
= σ(αx+ β) + σ(γx+ δ)

σ((αx+ β)(γx+ δ)) = σ(αγx2 + (αδ + βγ)x+ βδ)

= σ((αδ + βγ)x+ βδ − αγ) as αγx2 ≡ −αγ mod x2 + 1

= (αδ + βγ)x− 5(αδ + βγ) + βδ − αγ + 〈x2 + x+ 4〉

Now

(αx+ β − 5α + 〈x2 + x+ 4〉 )(γx+ δ − 5γ + 〈x2 + x+ 4〉 )
= αγx2 + αδx− 5αγx+ βγx+ βδ − 5βγ − 4αγx− 5αδ + 25γα + 〈x2 + x+ 4〉
= αγ(−x− 4) + αδx− 5αγx+ βγx+ βδ − 5βγ − 4αγx− 5αδ + 3γα + 〈x2 + x+ 4〉
= x[−αγ + αδ + βγ − 5αγ − 5αγ] + βδ − 5βγ − 5αδ − αγ + 〈x2 + x+ 4〉
≡ x[αδ + βγ] + βδ − 5βγ − 5αδ − αγ + 〈x2 + x+ 4〉 mod 11

Thus σ((αx+ β)(γx+ δ)) = σ((αx+ β))σ((γx+ δ)) showing that σ is a homomorphism.
σ is 1 − 1: The kernel of σ is an ideal of K1, but K1 is a field, therefore the only ideals

of K1 are the trivial ideal 〈0〉 and K1. Since σ is not a zero map, it follows that the kernel
of σ is 〈0〉 , thus σ is 1− 1.

σ is onto: Since K1 and K2 have 121 elements each, and sigma is one-one, σ(K1) = K2.
Thus σ is an isomorphism from K1 to K2.

Question 2(c) Find the degree of the splitting field of f(x) = x5− 3x3 + x2− 3 over Q, the
field of rationals.

Solution. f(x) has -1 as a root, so f(x) = (x + 1)(x4 − x3 − 2x2 + 3x − 3). It does not
have any other linear factors as −1, 1, 3,−3 are not roots of x4 − x3 − 2x2 + 3x+ 3.

Let x4 − x3 − 2x2 + 3x + 3 = (x2 + bx + c)(x2 + dx + e), where b, c, d, e ∈ Z. Then
b + d = −1, c + e + bd = −2, be + dc = 3, ce = −3. From ce = −3, we get c = −1, e = 3 or
c = 1, e = −3 (the other choices are symmetric). Using c = 1, e = −3, we get −3b + d = 3,
and now from b+ d = −1, we get b = −1, d = 0. Thus we get

f(x) = (x+ 1)(x2 − x+ 1)(x2 − 3)
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Consequently, the splitting field of f(x) over Q is the smallest field containing±
√

3, 1±i
√

3
2

,
namely the roots of x2 − 3 and x2 − x+ 1.

Thus Q(
√

3, i) is the required splitting field. Since Q(
√

3, i) ⊇ Q(
√

3) ⊇ Q, and (Q(
√

3) :
Q) = 2 and (Q(

√
3, i) : Q(

√
3)) = 2 it follows that the splitting field Q(

√
3, i) of f(x) has

degree 4 over Q.
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