
UPSC Civil Services Main 1993 - Mathematics
Algebra

Question 1(a) Let G be a cyclic group of order n and p | n. Prove that there exists a
homomorphism of G onto a cyclic group of order p. What is the kernel of the homomorphism?

Solution. Let G = 〈a〉 = {a, a2, . . . , an} and G′ = 〈b〉 = {b, b2, . . . , bp}.
Define φ : G −→ G′ by φ(ar) = bt where r ≡ t mod p, t = 1, 2, . . . p.
φ(ar · as) = bu where r+ s ≡ u mod p. If φ(ar) = bx where r ≡ x mod p and φ(as) = by

where s ≡ y mod p, then x+y ≡ r+ s ≡ u mod p⇒ bx+y = bu. So φ(ar ·as) = φ(ar)φ(as),
thus φ is a homomorphism.

kerφ = {ar | φ(ar) = bp ⇔ r ≡ p mod p}. Thus the kernel of φ is {ap, a2p, . . . , amp,mp =
n}.

Question 1(b) Show that a group G of order 56 cannot be simple.

Solution. The number of 7-Sylow subgroups of ≡ 1 mod 7 and divides 56, so can be 1 or
8. If 1, then the 7-Sylow group is normal in G. If the number is 8, then G has 48 elements of
order 7, because if H,K are different Sylow subgroups of order 7, then H ∩K = {e} because
7 is a prime.

Thus the Sylow subgroups of order 8 can come from the remaining elements which are
only 8 in number (including e). Thus there is a unique Sylow subgroup of order 8, which
has to be normal.

Thus any group of order 56 has a normal subgroup of order 7 or of order 8, so it cannot
be simple.

1

Brij Bhooshan
Asst. Professor

B.S.A. College of Engg & Technology
Mathura

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.



Question 1(c) Let H and K be normal subgroups of G (finite), with H a normal subgroup
of K. If P = K/H, S = G/H, show that G/K ' S/P .

Solution. Define φ : G/H −→ G/K by φ(aH) = aK.

• φ is well-defined: aH = bH ⇔ b−1a ∈ H ⇒ b−1a ∈ K(∵ H ⊆ K) ⇒ aK = bK ⇒
φ(aH) = φ(bH).

• φ is a homomorphism: φ(aH · bH) = φ(abH) = abK = aK · bK = φ(aH)φ(bH).

• φ is onto: Given xK ∈ G/K, φ(xH) = xK, xH ∈ G/H.

kerφ = {xH | xK = K}. But xK = K ⇔ x ∈ K. Thus kerφ = K/H. By the fundamental

theorem of homomorphisms, S/P = G/H
K/H
' G/K.

Question 2(a) If Z is the set of integers, then show that Z[
√
−3] = {a+ b

√
−3 | a, b ∈ Z}

is not a UFD.

Solution. Let α = a+ b
√
−3 ∈ Z[

√
−3]. Then α is a unit iff N(α) = a2 + 3b2 = 1, because

if N(α) = 1, then αα = 1 ⇒ α is a unit with α = a − b
√
−3 as its inverse. Conversely, if

αβ = 1, then N(αβ) = N(α)N(β) = 1⇒ N(α) = 1. In fact N(α) = 1⇒ α = ±1, the only
units of Z[

√
−3].

2 is irreducible. Let 2 = αβ. We will prove that either α or β is a unit. N(2) = 4 ⇒
N(α) = 1, 2, 4. But N(α) = a2 + 3b2 = 2 is not possible for a, b ∈ Z. If N(α) = 1, then α is
a unit, otherwise N(α) = 4⇒ N(β) = 1⇒ β is a unit. Thus 2 is irreducible.

Similarly it can be shown that 1 +
√
−3, 1 −

√
−3 are irreducible (N(1 +

√
−3) = 4).

Moreover, 2, 1 +
√
−3, 1−

√
−3 are not associates of each other as the only units in Z[

√
−3]

are ±1. Now 4 = 2 · 2 = (1 +
√
−3)(1 −

√
−3) are two different factorizations of 4 into

irreducibles, hence Z[
√
−3] is not a UFD.

Question 2(b) Construct the addition and mutiplication table for Z3[x]/〈x2 + 1〉, where Z3

is the set of integers modulo 3 and 〈x2 + 1〉 is the ideal generated by 1 + x2.

Solution. Let f(x) = a0 + a1x+ . . .+ anx
n with ai ∈ Z3. Since

xr ≡
[

(−1)r/2

(−1)
r−1
2 x

mod x2 + 1

it follows that

f(x) ≡ a0 + a1x− a2 − a3x+ a4 + . . . mod x2 + 1

= [bo] + [b1][x]

where [x] is the residue class of x modulo x2 + 1 and [b0], [b1] are residue classes in Z3.
Conversely, [bo] + [b1][x] always belongs to Z3[x]/〈x2 + 1〉.
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Thus Z3[x]/〈x2 + 1〉 has 9 elements, namely

{0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}

Note that we have listed representative elements of distinct residue classes modulo x2 + 1.
Now addition is simply: (a0 + a1x) + (b0 + b1x) = c0 + c1x where ci ≡ ai + bi mod 3 for

i = 0, 1.
Multiplication is defined by (a0 +a1x)(b0 + b1x) = c0 + c1x where c0 ≡ a0b0−a1b1 mod 3

and c1 ≡ a0b1 +a1b0 mod 3. The reader can now expand these into the appropriate addition
and multiplication tables.

Notice the strong resemblance between the addition and multiplication rules derived
above and the corresponding rules for complex numbers. This is a consequence of the fact
that i is a root of x2 +1, in fact the ring of Gaussian integers is isomorphic to Z[x]/〈x2 +1〉.

Question 2(c) Let Q be the rational number field, and Q(21/2, 21/3) by the smalled extension
field containing 21/2, 21/3. Find a basis of Q(21/2, 21/3) over Q.

Solution. If K ⊇ L ⊇ k are fields such that (K : L) = m, (L : k) = n then (K : k) = mn.
In fact if {v1, . . . , vm} is a basis of K over L, {w1, . . . , wn} is a basis of L over k, then
{viwj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of K over k.

Proof: Let
m∑

i=1

n∑
j=1

aijviwj = 0 with aij ∈ k. Then
m∑

i=1

n∑
j=1

aijviwj =
m∑

i=1

(
n∑

j=1

aijwj)vi =

0. But
n∑

j=1

aijwj ∈ L, and as v1, . . . , vm are linearly independent over L,
n∑

j=1

aijwj = 0 for

each i, 1 ≤ i ≤ m. However w1, . . . , wn are linearly independent over k, thus aij = 0 for
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let α ∈ K. Then α =
m∑

i=1

αivi, αi ∈ L. Now let αi =
n∑

j=1

aijwj with aij ∈ k, then

α =
m∑

i=1

n∑
j=1

aijviwj ⇒ {viwj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} generate K over k. This completes

the proof.
Now Q(21/2) has {1,

√
2} as a basis over Q, and (Q(21/2, 21/3) : Q(21/2)) = 3 with x3−2 as

the irreducible polynomial of 21/3 over Q(21/2). Thus 1, 21/3, 22/3 is a basis of (Q(21/2, 21/3)
over Q(21/2). Thus by the above result, {1, 21/2, 21/3, 21/2+1/3, 22/3, 22/3+1/2} is a basis for
Q(21/2, 21/3) over Q.
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