UPSC Civil Services Main 1994 - Mathematics Algebra

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) If G is a group such that $(ab)^n = a^n b^n$ for three consecutive integers for all $a, b \in G$, then show that G is abelian.

Solution. We are given that $(ab)^i = a^i b^i, (ab)^{i+1} = a^{i+1} b^{i+1}, (ab)^{i+2} = a^{i+2} b^{i+2}.$ Now $(ab)^{i+1} = aba^i b^i = aba^i b^i = a^{i+1} b^{i+1}.$ Thus $a^i b = ba^i.$

Also, $(ab)^2(ab)^i = a^{i+2}b^{i+2} = a^2a^ib^2b^i = a^2a^ibbb^i = a^2ba^ibb^i = a^2b^2a^ib^i$, because $a^ib = ba^i$. But $(ab)^i = a^ib^i$, hence $(ab)^2 = a^2b^2 \Rightarrow abab = a^2b^2 \Rightarrow ba = ab$. Thus G is abelian.

Note that the result is false if we only have two consecutive integers e.g. $G = S_3$ has $(ab)^6 = e = a^6 b^6$, and $(ab)^7 = (ab)^6 ab = ab = a^7 b^7$.

Question 1(b) Can a group of order 42 be simple? Justify your claim.

Solution. By Sylow theorems, the number of 7-Sylow groups is $\equiv 1 \mod 7$, and divides 42, and therefore divides $6 \Rightarrow$ there is only 1 Sylow group of order 7, which has to be normal, thus a group of order 42 cannot be simple.

Question 1(c) Show that the additive group of integers modulo 4 is isomorphic to the multiplicative group of the non-zero elements of integers modulo 5. State the two isomorphisms.

Solution.

$$\mathbb{Z}/(4) = \{[0], [1], [2], [3]\} = \langle [1] \rangle$$

$$\mathbb{Z}/\langle 5 \rangle = \{[1], [2], [3], [4]\} = \langle [2] \rangle$$

$$= \{[2], [2]^2 = [4], [2]^3 = [3], [2]^4 = [1]\}$$

Two cyclic groups of the same order are isomorphic. $\phi : \mathbb{Z}/(4) \longrightarrow \mathbb{Z}/\langle 5 \rangle$:

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

$$\phi([1]) = [2]$$

$$\phi([1] + [1]) = \phi([2]) = [2]^2 = [4]$$

$$\phi([3]) = \phi(3.[1]) = [2]^3 = [3]$$

$$\phi([4]) = \phi(4.[1]) = [2]^4 = [1]$$

 $f: \mathbb{Z}/\langle 5 \rangle \longrightarrow \mathbb{Z}/(4).$

$$\begin{aligned} f([2]) &= [1] \\ f([4]) &= f([2]^2) = f([2]) + f([2]) = [2] \\ f([3]) &= f([2]^3) = f([2]) + f([2]) + f([2]) = [3] \\ f([1]) &= f([2]^4) = f([2]) + f([2]) + f([2]) + f([2]) = [4] \end{aligned}$$

Question 2(a) Find all the units of the integral domain of Gaussian integers.

Solution. Let $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$. Let $N(a + ib) = a^2 + b^2$. We will show that $\alpha \in \mathbb{Z}[i]$ is a unit $\Leftrightarrow N(\alpha) = 1$.

If α is a unit then $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[i] \Rightarrow N(\alpha\beta) = N(\alpha)N(\beta) = 1 \Rightarrow N(\alpha) = 1$ because $N(\alpha), N(\beta)$ are positive integers.

Conversely, $N(\alpha) = 1 \Rightarrow a^2 + b^2 = 1 \Rightarrow (a + ib)(a - ib) = 1 \Rightarrow \alpha$ is a unit.

Now the only integer solutions to $N(\alpha) = a^2 + b^2 = 1$ are $a = \pm 1, b = 0$ or $a = 0, b = \pm 1$. Thus the only units are $\{\pm 1, \pm i\}$.

Question 2(b) Prove or disprove: The polynomial ring I[x] over the ring of integers is a Principal Ideal Domain (PID).

Solution. It is not a PID. The ideal generated by 2 and x is not a principal ideal. Suppose $\langle 2, x \rangle = \langle f(x) \rangle$. Then $2 \in \langle f(x) \rangle \Rightarrow f(x)g(x) = 2$ for some g(x). This means that f(x) is a constant and divides 2, so f(x) = 1or 2.

 $f(x) = 2 \Rightarrow x \notin \langle f(x) \rangle \therefore 2g(x) = x$ is not possible for any $g(x) \in I[x]$.

 $f(x) = 1 \Rightarrow 1 \in \langle 2, x \rangle \Rightarrow 1 = 2p(x) + xq(x) \Rightarrow 2 \times$ the constant term of a(x) = 1, which is not possible. Thus $\langle 2, x \rangle$ is not a principal ideal.

Question 2(c) Let R be an integral domain (not necessarily a unique factorization domain), and F its field of quotients. Show that any element $f(x) \in F[x]$ is of the form $f(x) = \frac{f_0(x)}{a}$ where $f_0(x) \in R[x]$ and $a \in R$.

Solution. $f(x) = a_0 + a_1 x + \ldots a_m x^m$, where $a_i \in F$. Now $a_i = b_i/c_i$, where $b_i, c_i \in R$. Then $f(x) \prod_i c_i = A_0 + A_1 x + \ldots + A_m x^m$ where $A_i \in R$.

Thus $f(x) = \frac{f_0(x)}{a}$, where $f_0(x) = A_0 + A_1 x + \ldots + A_m x^m$, and $a = \prod_i c_i$.

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.