UPSC Civil Services Main 1994 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) If G is a group such that $(a b)^{n}=a^{n} b^{n}$ for three consecutive integers for all $a, b \in G$, then show that G is abelian.

Solution. We are given that $(a b)^{i}=a^{i} b^{i},(a b)^{i+1}=a^{i+1} b^{i+1},(a b)^{i+2}=a^{i+2} b^{i+2}$.
Now $(a b)^{i+1}=a b a^{i} b^{i}=a b a^{i} b^{i}=a^{i+1} b^{i+1}$. Thus $a^{i} b=b a^{i}$.
Also, $(a b)^{2}(a b)^{i}=a^{i+2} b^{i+2}=a^{2} a^{i} b^{2} b^{i}=a^{2} a^{i} b b b^{i}=a^{2} b a^{i} b b^{i}=a^{2} b^{2} a^{i} b^{i}$, because $a^{i} b=b a^{i}$. But $(a b)^{i}=a^{i} b^{i}$, hence $(a b)^{2}=a^{2} b^{2} \Rightarrow a b a b=a^{2} b^{2} \Rightarrow b a=a b$. Thus G is abelian.

Note that the result is false if we only have two consecutive integers e.g. $G=S_{3}$ has $(a b)^{6}=e=a^{6} b^{6}$, and $(a b)^{7}=(a b)^{6} a b=a b=a^{7} b^{7}$.

Question 1(b) Can a group of order 42 be simple? Justify your claim.
Solution. By Sylow theorems, the number of 7 -Sylow groups is $\equiv 1 \bmod 7$, and divides 42 , and therefore divides $6 \Rightarrow$ there is only 1 Sylow group of order 7 , which has to be normal, thus a group of order 42 cannot be simple.

Question 1(c) Show that the additive group of integers modulo 4 is isomorphic to the multiplicative group of the non-zero elements of integers modulo 5. State the two isomorphisms.

Solution.

$$
\begin{aligned}
\mathbb{Z} /(4) & =\{[0],[1],[2],[3]\}=\langle[1]\rangle \\
\mathbb{Z} /\langle 5\rangle & =\{[1],[2],[3],[4]\}=\langle[2]\rangle \\
& =\left\{[2],[2]^{2}=[4],[2]^{3}=[3],[2]^{4}=[1]\right\}
\end{aligned}
$$

Two cyclic groups of the same order are isomorphic. $\phi: \mathbb{Z} /(4) \longrightarrow \mathbb{Z} /\langle 5\rangle$:

For more information log on www.brijrbedu.org.

$$
\begin{aligned}
\phi([1]) & =[2] \\
\phi([1]+[1]) & =\phi([2])=[2]^{2}=[4] \\
\phi([3]) & =\phi(3 \cdot[1])=[2]^{3}=[3] \\
\phi([4]) & =\phi(4 .[1])=[2]^{4}=[1]
\end{aligned}
$$

$f: \mathbb{Z} /\langle 5\rangle \longrightarrow \mathbb{Z} /(4)$.

$$
\begin{aligned}
& f([2])=[1] \\
& f([4])=f\left([2]^{2}\right)=f([2])+f([2])=[2] \\
& f([3])=f\left([2]^{3}\right)=f([2])+f([2])+f([2])=[3] \\
& f([1])=f\left([2]^{4}\right)=f([2])+f([2])+f([2])+f([2])=[4]
\end{aligned}
$$

Question 2(a) Find all the units of the integral domain of Gaussian integers.
Solution. Let $\mathbb{Z}[i]=\{a+i b \mid a, b \in \mathbb{Z}\}$. Let $N(a+i b)=a^{2}+b^{2}$. We will show that $\alpha \in \mathbb{Z}[i]$ is a unit $\Leftrightarrow N(\alpha)=1$.

If α is a unit then $\alpha \beta=1$ for some $\beta \in \mathbb{Z}[i] \Rightarrow N(\alpha \beta)=N(\alpha) N(\beta)=1 \Rightarrow N(\alpha)=1$ because $N(\alpha), N(\beta)$ are positive integers.

Conversely, $N(\alpha)=1 \Rightarrow a^{2}+b^{2}=1 \Rightarrow(a+i b)(a-i b)=1 \Rightarrow \alpha$ is a unit.
Now the only integer solutions to $N(\alpha)=a^{2}+b^{2}=1$ are $a= \pm 1, b=0$ or $a=0, b= \pm 1$. Thus the only units are $\{ \pm 1, \pm i\}$.

Question 2(b) Prove or disprove: The polynomial ring $I[x]$ over the ring of integers is a Principal Ideal Domain (PID).

Solution. It is not a PID. The ideal generated by 2 and x is not a principal ideal. Suppose $\langle 2, x\rangle=\langle f(x)\rangle$. Then $2 \in\langle f(x)\rangle \Rightarrow f(x) g(x)=2$ for some $g(x)$. This means that $f(x)$ is a constant and divides 2 , so $f(x)=1$ or 2 .
$f(x)=2 \Rightarrow x \notin\langle f(x)\rangle \because 2 g(x)=x$ is not possible for any $g(x) \in I[x]$.
$f(x)=1 \Rightarrow 1 \in\langle 2, x\rangle \Rightarrow 1=2 p(x)+x q(x) \Rightarrow 2 \times$ the constant term of $a(x)=1$, which is not possible. Thus $\langle 2, x\rangle$ is not a principal ideal.

Question 2(c) Let R be an integral domain (not necessarily a unique factorization domain), and F its field of quotients. Show that any element $f(x) \in F[x]$ is of the form $f(x)=\frac{f_{0}(x)}{a}$ where $f_{0}(x) \in R[x]$ and $a \in R$.

Solution. $f(x)=a_{0}+a_{1} x+\ldots a_{m} x^{m}$, where $a_{i} \in F$. Now $a_{i}=b_{i} / c_{i}$, where $b_{i}, c_{i} \in R$. Then $f(x) \prod_{i} c_{i}=A_{0}+A_{1} x+\ldots+A_{m} x^{m}$ where $A_{i} \in R$.

Thus $f(x)=\frac{f_{0}(x)}{a}$, where $f_{0}(x)=A_{0}+A_{1} x+\ldots+A_{m} x^{m}$, and $a=\prod_{i} c_{i}$.

