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Question 1(a) Let G be a finite set closed under an associative binary operation such that
ab = ac⇒ b = c, ba = ca⇒ b = c for all a, b, c ∈ G. Prove that G is a group.

Solution. LetG = {a1, a2, . . . , an}. Consider {a1a1, a2a1, . . . , ana1} and {a1a1, a1a2, . . . , a1an}.
These sets have distinct elements because ajai = akai ⇒ aj = ak, and aiaj = aiak ⇒ aj = ak.
Thus G = {a1, a2, . . . , an} = {a1a1, a2a1, . . . , ana1} = {a1a1, a1a2, . . . , a1an}. Thus there ex-
ists r, 1 ≤ r ≤ n such that a1 = a1ar. Now for any aj ∈ G, aj = asa1 for some s, therefore
ajar = asa1ar = asa1 = aj. Hence we have proved that G has a right identity. As seen above,
for any aj ∈ G, the set {aja1, aja2, . . . , ajan} = G, hence therefore there exists k, 1 ≤ k ≤ n
such that ajak = ar, thus every element has a right inverse.

Similarly, we can show that G has a left identity and every element in G has a left
inverse. Let as be the left identity. Then ar = asar = as, so the left identity is the same as
the right identity. If aiaj = ar and akai = ar, then ak = akar = akaiaj = araj = aj (using
associativity), hence the left inverse is the same as the right inverse. Thus G has an identity,
every element of G has an inverse, and the operation is associative, so G is a group.

Alternatively, let x ∈ G and let xy = e, where e is the right identity. Then exy = ee =
e = xy ⇒ ex = x, so e is also the left identity. Now yxy = ye = ey ⇒ yx = e, thus the right
inverse is the same as the left inverse.

Question 1(b) Let G be a subgroup of order pn, where p is a prime number and n > 0. Let
H be a proper subgroup of G and N(H) = {x ∈ G | x−1hx ∈ H for every h ∈ H} = {x ∈
G | x−1Hx = H}. Prove that N(H) 6= H.

Solution. The proof is by induction over n. If n = 1, then H = {e} is the only possibility
for a proper subgroup, since G is cyclic. N(H) = G 6= H. If n = 2, it is well known that G
is abelian, and therefore for any proper subgroup H of G, N(H) = G 6= H.
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Assume as induction hypothesis that the result is true for all groups of order pm where
m < n.

Let G be a group of order pn and let H be a proper subgroup of G. We consider the
following two possible cases

Case (i): H does not contain C, the center of G, then there exists an element z ∈ C−H.
Clearly z ∈ N(H) and therefore N(H) ⊃ H properly.

Case (ii): H ⊇ C. In this case H = H/C is a proper subgroup of G = G/C. Since G
is a prime power group, it is known that the center C of G is nontrivial, therefore |G| =
order of G = pm where m < n. Thus by the induction hypothesis the normalizer of H in G
contains H properly, i.e. there exists an element b ∈ G such that b 6∈ H and b ∈ N(H) i.e.

b
−1
Hb = H. It is now obvious that b 6∈ H and b−1Hb ⊆ HC = H i.e. b ∈ N(H). Hence

N(H) 6= H.
Alternative presentation: Let Co = {e}, C1 = center of G. If C1 6= G, let Z1 be

the center of G/C1. Let C2 = η−1(Z1), where η : G −→ G/C1 is the natural map. Thus
C2/C1 = Z1. If C2 6= G, we define C3 = η−1(center of G/C2), where η is now the natural
map from G ont G/C2.

Clearly C0 ( C1 ( C2 ( . . . because the center of a prime power group is non-trivial.
Since G is finite, we have Cr = G for some r. Thus C0 ( C1 ( C2 ( . . . ( Cr = G. Now
each Ci is normal in G, because Z1 is normal in G/C1 ⇒ η−1(Z1) = C2 is normal in G and
so on.

Since C0 ⊆ H, and Cr 6⊆ H, there is a k, 0 ≤ k < r such that Ck ⊆ H, Ck+1 6⊆ H. Let
x ∈ Ck+1, x 6∈ H. For any g ∈ G, x−1g−1xg ∈ Ck, because xCk ∈ center of G/Ck, x ∈ Ck+1,
which means that xgCk = xCkgCk = gCkxCk = gxCk. Thus x−1g−1xg ∈ Ck.

In particular x−1h−1xh ∈ Ck∀h ∈ H. Thus x−1h−1xh ∈ H because Ck ⊆ H, or
x−1h−1x ∈ H for all h ∈ H. Thus x ∈ N(H). But x 6∈ H, so N(H) 6= H.

Question 1(c) Show that a group of order 112 is not simple.

Solution. Let G be a group of order 112.
If the Sylow 2-subgroup, which is of order 16, is unique, then it is automatically a normal

subgroup of G and we have nothing to prove.
Let us therefore assume that G has more than one Sylow 2-subgroups. By one of Sylow

theorems, the number of such subgroups is ≡ 1 mod 2, and is a divisor of 112 and therefore
of 7. Thus G has 7 subgroups say H1, H2, . . . , H7 such that |Hi| = 16, 1 ≤ i ≤ 7.

Observe that Hi∩Hj for i 6= j must have at least 4 elements because if not |HiHj| ≥ 128

as |HiHj| = |Hi||Hj |
|Hi∩Hj | , which is not possible.

We now consider the following two cases.
Case 1: Suppose (without loss of generality) that |H| = |H1 ∩ H2| = 8. This means

that H is a normal subgroup of H1 as well as H2 and therefore N(H) contains H1H2. But

|H1H2| = |H1||H2|
|H1∩H2| = 32, therefore |N(H)| ≥ 32 and 16 divides |N(H)| as N(H) ⊃ H.

Consequently |N(H)| = 112 i.e. N(H) = G. Thus H is a normal subgroup of G showing
that G is not simple.

2
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



Case 2: Let |Hi ∩Hj| = 4 for i 6= j. Let H = H1 ∩H2, then |H| = 4. We have proved
in question 1(b) that NH1(H) (the normalizer of H in H1) contains H properly and also
NH2(H) contains H properly. Thus each of NH1(H) and NH2(H) have 8 or 16 elements.

Case 2(a): One of the normalizers has 16 elements — suppose without loss of generality
that NH1(H) = H1, then NG(H) contains H1 and NH2(H) and therefore NG(H) contains
at least 16 × 8/4 elements, and 16 divides |NG(H)| as H1 ⊂ NG(H) — note that |Hi| =
16, |NH2(H)| ≥ 8 and H1 ∩ NH2(H) being a subgroup of H1 ∩ H2 has at most 4 elements.
Thus as in case 1, we get NG(H) = G, so H is a normal subgroup of G, showing that G is
not simple.

Case 2(b): NH1(H) 6= H1 and NH2(H) 6= H2, then |NH1(H)| = |NH2(H)| = 8. In this
case NG(H) contains at least 8× 8/4 elements and 8 divides |NG(H)|. Thus |NG(H)| = 16
or 56. If |NG(H)| = 16, then it is one of the Hi, say NG(H) = H3, in this case |H1∩H3| = 8,
which contradicts the precondition for case 2 i.e. |Hi∩Hj| = 4 for i 6= j. Thus |NG(H)| = 56,
and in this case G is not simple as NG(H) is a proper normal subgroup of G.

This completes the proof.
Alternative Presentation. o(G) = 24 · 7. The number of 7-Sylow subgroups ≡ 1

mod 7 and divides o(G). Thus the number of 7-Sylow subgroups is 1 or 8. If 1, then the
7-Sylow subgroup of G is normal in G, and G is not simple. Otherwise we will show that G
has a unique 16-Sylow subgroup, which will be normal in G and hence G will not be simple.

Let the number of 7-Sylow subgroups be 8. This accounts for 49 elements, 48 of order 7,
and the identity. Note that if H and K are Sylow subgroups of order 7, then H ∩K = {e}
if H 6= K because order of H is prime.

We are now left with 63 elements + identity. The number of 2-Sylow groups is ≡ 1
mod 2 and divides 7. Thus out of these 64 elements we should get 7 16-Sylow subgroups
(because if there is only one 16-Sylow subgroup, it is normal, hence G is not simple). These
7 subgroups of order 16 will have a unique subgroup of order 8, which would be normal in
G.

Thus in all cases, G is not simple.

Question 2(a) Let R be a ring with identity. If an element of R has more than one right
inverse, show that it has infinitely many right inverses.

Solution. Let ax = e, ay = e, x 6= y, then xa 6= e (because xa = e⇒ xay = x⇒ ey = x⇒
y = x). Consider x, (xa− e) + x, (ya− e) + x. Then

ax = a((xa−e)+x) = axa−a+ax = a−a+ax = ea((ya−e)+x) = aya−a+ax = a−a+ax = e

Thus we get three distinct right inverses (if xa− e+ x = ya− e+ x then xax = yax⇒
x = y). So given n inverses a1, a2, . . . , an of a, by considering a1, a1a − e + a1, a2a − e +
a1, . . . , ana− e+ a1 we can get n+ 1 distinct right inverses. Hence there must be infinitely
many right inverses.
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Question 2(b) Let 〈p(x)〉 be an ideal generated by an irreducible polynomial in F [x], F a
field. Prove that it is a maximal ideal.

Solution. Let 〈p(x)〉 ( M ⊆ F [x]. We will show that M = F [x].
Let g(x) ∈ M, g(x) 6∈ 〈p(x)〉 ⇒ p(x) 6 | g(x). Thus (g(x), p(x)) = 1 i.e. g(x) and p(x) are

coprime. Then there exist a(x), b(x) ∈ F [x] such that a(x)g(x) + p(x)b(x) = 1⇒ 1 ∈ M ⇒
M = F [x].

Note that F [x] is a principal ideal domain. Therefore 〈p(x), g(x)〉 is a principal ideal and
it has to be generated by 1, because p(x) has no other divisors.

Question 2(c) Let F be a field of characteristic p > 0. Let f(x) = a0 + a1x+ . . .+ anx
n ∈

F [x]. Define f ′(x) = a1 + 2a2x + . . . + nanx
n−1. If f ′(x) = 0, then prove that there exists

g(x) = F [x] such that f(x) = g(xp) = g(x)p.

Solution. f ′(x) = 0⇔ rar = 0⇔ ar = 0 when r 6≡ 0 mod p. Thus f(x) =
∑t

m=0 ampx
mp

where t = [n/p]. Let g(y) = a0 + apy + . . . atpy
t. Then g(xp) = f(x) = (g(x))p.
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