UPSC Civil Services Main 1995 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let G be a finite set closed under an associative binary operation such that $a b=a c \Rightarrow b=c, b a=c a \Rightarrow b=c$ for all $a, b, c \in G$. Prove that G is a group.

Solution. Let $G=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Consider $\left\{a_{1} a_{1}, a_{2} a_{1}, \ldots, a_{n} a_{1}\right\}$ and $\left\{a_{1} a_{1}, a_{1} a_{2}, \ldots, a_{1} a_{n}\right\}$. These sets have distinct elements because $a_{j} a_{i}=a_{k} a_{i} \Rightarrow a_{j}=a_{k}$, and $a_{i} a_{j}=a_{i} a_{k} \Rightarrow a_{j}=a_{k}$. Thus $G=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\left\{a_{1} a_{1}, a_{2} a_{1}, \ldots, a_{n} a_{1}\right\}=\left\{a_{1} a_{1}, a_{1} a_{2}, \ldots, a_{1} a_{n}\right\}$. Thus there exists $r, 1 \leq r \leq n$ such that $a_{1}=a_{1} a_{r}$. Now for any $a_{j} \in G, a_{j}=a_{s} a_{1}$ for some s, therefore $a_{j} a_{r}=a_{s} a_{1} a_{r}=a_{s} a_{1}=a_{j}$. Hence we have proved that G has a right identity. As seen above, for any $a_{j} \in G$, the set $\left\{a_{j} a_{1}, a_{j} a_{2}, \ldots, a_{j} a_{n}\right\}=G$, hence therefore there exists $k, 1 \leq k \leq n$ such that $a_{j} a_{k}=a_{r}$, thus every element has a right inverse.

Similarly, we can show that G has a left identity and every element in G has a left inverse. Let a_{s} be the left identity. Then $a_{r}=a_{s} a_{r}=a_{s}$, so the left identity is the same as the right identity. If $a_{i} a_{j}=a_{r}$ and $a_{k} a_{i}=a_{r}$, then $a_{k}=a_{k} a_{r}=a_{k} a_{i} a_{j}=a_{r} a_{j}=a_{j}$ (using associativity), hence the left inverse is the same as the right inverse. Thus G has an identity, every element of G has an inverse, and the operation is associative, so G is a group.

Alternatively, let $x \in G$ and let $x y=e$, where e is the right identity. Then $e x y=e e=$ $e=x y \Rightarrow e x=x$, so e is also the left identity. Now $y x y=y e=e y \Rightarrow y x=e$, thus the right inverse is the same as the left inverse.

Question 1(b) Let G be a subgroup of order p^{n}, where p is a prime number and $n>0$. Let H be a proper subgroup of G and $N(H)=\left\{x \in G \mid x^{-1} h x \in H\right.$ for every $\left.h \in H\right\}=\{x \in$ $\left.G \mid x^{-1} H x=H\right\}$. Prove that $N(H) \neq H$.

Solution. The proof is by induction over n. If $n=1$, then $H=\{e\}$ is the only possibility for a proper subgroup, since G is cyclic. $N(H)=G \neq H$. If $n=2$, it is well known that G is abelian, and therefore for any proper subgroup H of $G, N(H)=G \neq H$.

Assume as induction hypothesis that the result is true for all groups of order p^{m} where $m<n$.

Let G be a group of order p^{n} and let H be a proper subgroup of G. We consider the following two possible cases

Case (i): H does not contain C, the center of G, then there exists an element $z \in C-H$. Clearly $z \in N(H)$ and therefore $N(H) \supset H$ properly.

Case (ii): $H \supseteq C$. In this case $\bar{H}=H / C$ is a proper subgroup of $\bar{G}=G / C$. Since G is a prime power group, it is known that the center C of G is nontrivial, therefore $|\bar{G}|=$ order of $\bar{G}=p^{m}$ where $m<n$. Thus by the induction hypothesis the normalizer of \bar{H} in \bar{G} contains \bar{H} properly, i.e. there exists an element $b \in G$ such that $\bar{b} \notin \bar{H}$ and $\bar{b} \in N(\bar{H})$ i.e. $\bar{b}^{-1} \bar{H} \bar{b}=\bar{H}$. It is now obvious that $b \notin H$ and $b^{-1} H b \subseteq H C=H$ i.e. $b \in N(H)$. Hence $N(H) \neq H$.

Alternative presentation: Let $C_{o}=\{e\}, C_{1}=$ center of G. If $C_{1} \neq G$, let Z_{1} be the center of G / C_{1}. Let $C_{2}=\eta^{-1}\left(Z_{1}\right)$, where $\eta: G \longrightarrow G / C_{1}$ is the natural map. Thus $C_{2} / C_{1}=Z_{1}$. If $C_{2} \neq G$, we define $C_{3}=\eta^{-1}$ (center of G / C_{2}), where η is now the natural map from G ont G / C_{2}.

Clearly $C_{0} \subsetneq C_{1} \subsetneq C_{2} \subsetneq \ldots$ because the center of a prime power group is non-trivial. Since G is finite, we have $C_{r}=G$ for some r. Thus $C_{0} \subsetneq C_{1} \subsetneq C_{2} \subsetneq \ldots \subsetneq C_{r}=G$. Now each C_{i} is normal in G, because Z_{1} is normal in $G / C_{1} \Rightarrow \eta^{-1}\left(Z_{1}\right)=C_{2}$ is normal in G and so on.

Since $C_{0} \subseteq H$, and $C_{r} \nsubseteq H$, there is a $k, 0 \leq k<r$ such that $C_{k} \subseteq H, C_{k+1} \nsubseteq H$. Let $x \in C_{k+1}, x \notin H$. For any $g \in G, x^{-1} g^{-1} x g \in C_{k}$, because $x C_{k} \in$ center of $G / C_{k}, x \in C_{k+1}$, which means that $x g C_{k}=x C_{k} g C_{k}=g C_{k} x C_{k}=g x C_{k}$. Thus $x^{-1} g^{-1} x g \in C_{k}$.

In particular $x^{-1} h^{-1} x h \in C_{k} \forall h \in H$. Thus $x^{-1} h^{-1} x h \in H$ because $C_{k} \subseteq H$, or $x^{-1} h^{-1} x \in H$ for all $h \in H$. Thus $x \in N(H)$. But $x \notin H$, so $N(H) \neq H$.

Question 1(c) Show that a group of order 112 is not simple.
Solution. Let G be a group of order 112 .
If the Sylow 2 -subgroup, which is of order 16 , is unique, then it is automatically a normal subgroup of G and we have nothing to prove.

Let us therefore assume that G has more than one Sylow 2-subgroups. By one of Sylow theorems, the number of such subgroups is $\equiv 1 \bmod 2$, and is a divisor of 112 and therefore of 7 . Thus G has 7 subgroups say $H_{1}, H_{2}, \ldots, H_{7}$ such that $\left|H_{i}\right|=16,1 \leq i \leq 7$.

Observe that $H_{i} \cap H_{j}$ for $i \neq j$ must have at least 4 elements because if not $\left|H_{i} H_{j}\right| \geq 128$ as $\left|H_{i} H_{j}\right|=\frac{\left|H_{i}\right|\left|H_{j}\right|}{\left|H_{i} \cap H_{j}\right|}$, which is not possible.

We now consider the following two cases.
Case 1: Suppose (without loss of generality) that $|H|=\left|H_{1} \cap H_{2}\right|=8$. This means that H is a normal subgroup of H_{1} as well as H_{2} and therefore $N(H)$ contains $H_{1} H_{2}$. But $\left|H_{1} H_{2}\right|=\frac{\left|H_{1}\right|\left|H_{2}\right|}{\left|H_{1} \cap H_{2}\right|}=32$, therefore $|N(H)| \geq 32$ and 16 divides $|N(H)|$ as $N(H) \supset H$. Consequently $|N(H)|=112$ i.e. $N(H)=G$. Thus H is a normal subgroup of G showing that G is not simple.

Case 2: Let $\left|H_{i} \cap H_{j}\right|=4$ for $i \neq j$. Let $H=H_{1} \cap H_{2}$, then $|H|=4$. We have proved in question $1(\mathrm{~b})$ that $N_{H_{1}}(H)$ (the normalizer of H in H_{1}) contains H properly and also $N_{H_{2}}(H)$ contains H properly. Thus each of $N_{H_{1}}(H)$ and $N_{H_{2}}(H)$ have 8 or 16 elements.

Case 2(a): One of the normalizers has 16 elements - suppose without loss of generality that $N_{H_{1}}(H)=H_{1}$, then $N_{G}(H)$ contains H_{1} and $N_{H_{2}}(H)$ and therefore $N_{G}(H)$ contains at least $16 \times 8 / 4$ elements, and 16 divides $\left|N_{G}(H)\right|$ as $H_{1} \subset N_{G}(H)$ - note that $\left|H_{i}\right|=$ 16, $\left|N_{H_{2}}(H)\right| \geq 8$ and $H_{1} \cap N_{H_{2}}(H)$ being a subgroup of $H_{1} \cap H_{2}$ has at most 4 elements. Thus as in case 1, we get $N_{G}(H)=G$, so H is a normal subgroup of G, showing that G is not simple.

Case 2(b): $N_{H_{1}}(H) \neq H_{1}$ and $N_{H_{2}}(H) \neq H_{2}$, then $\left|N_{H_{1}}(H)\right|=\left|N_{H_{2}}(H)\right|=8$. In this case $N_{G}(H)$ contains at least $8 \times 8 / 4$ elements and 8 divides $\left|N_{G}(H)\right|$. Thus $\left|N_{G}(H)\right|=16$ or 56. If $\left|N_{G}(H)\right|=16$, then it is one of the H_{i}, say $N_{G}(H)=H_{3}$, in this case $\left|H_{1} \cap H_{3}\right|=8$, which contradicts the precondition for case 2 i.e. $\left|H_{i} \cap H_{j}\right|=4$ for $i \neq j$. Thus $\left|N_{G}(H)\right|=56$, and in this case G is not simple as $N_{G}(H)$ is a proper normal subgroup of G.

This completes the proof.
Alternative Presentation. $o(G)=2^{4} \cdot 7$. The number of 7 -Sylow subgroups $\equiv 1$ $\bmod 7$ and divides $o(G)$. Thus the number of 7 -Sylow subgroups is 1 or 8 . If 1 , then the 7-Sylow subgroup of G is normal in G, and G is not simple. Otherwise we will show that G has a unique 16-Sylow subgroup, which will be normal in G and hence G will not be simple.

Let the number of 7 -Sylow subgroups be 8. This accounts for 49 elements, 48 of order 7, and the identity. Note that if H and K are Sylow subgroups of order 7, then $H \cap K=\{e\}$ if $H \neq K$ because order of H is prime.

We are now left with 63 elements + identity. The number of 2-Sylow groups is $\equiv 1$ $\bmod 2$ and divides 7 . Thus out of these 64 elements we should get 7 16-Sylow subgroups (because if there is only one 16 -Sylow subgroup, it is normal, hence G is not simple). These 7 subgroups of order 16 will have a unique subgroup of order 8 , which would be normal in G.

Thus in all cases, G is not simple.

Question 2(a) Let R be a ring with identity. If an element of R has more than one right inverse, show that it has infinitely many right inverses.

Solution. Let $a x=e, a y=e, x \neq y$, then $x a \neq e$ (because $x a=e \Rightarrow x a y=x \Rightarrow e y=x \Rightarrow$ $y=x)$. Consider $x,(x a-e)+x,(y a-e)+x$. Then
$a x=a((x a-e)+x)=a x a-a+a x=a-a+a x=e a((y a-e)+x)=a y a-a+a x=a-a+a x=e$
Thus we get three distinct right inverses (if $x a-e+x=y a-e+x$ then $x a x=y a x \Rightarrow$ $x=y$). So given n inverses $a_{1}, a_{2}, \ldots, a_{n}$ of a, by considering $a_{1}, a_{1} a-e+a_{1}, a_{2} a-e+$ $a_{1}, \ldots, a_{n} a-e+a_{1}$ we can get $n+1$ distinct right inverses. Hence there must be infinitely many right inverses.

Question 2(b) Let $\langle p(x)\rangle$ be an ideal generated by an irreducible polynomial in $F[x], F a$ field. Prove that it is a maximal ideal.

Solution. Let $\langle p(x)\rangle \subsetneq M \subseteq F[x]$. We will show that $M=F[x]$.
Let $g(x) \in M, g(x) \notin\langle p(x)\rangle \Rightarrow p(x) \not \backslash g(x)$. Thus $(g(x), p(x))=1$ i.e. $g(x)$ and $p(x)$ are coprime. Then there exist $a(x), b(x) \in F[x]$ such that $a(x) g(x)+p(x) b(x)=1 \Rightarrow 1 \in M \Rightarrow$ $M=F[x]$.

Note that $F[x]$ is a principal ideal domain. Therefore $\langle p(x), g(x)\rangle$ is a principal ideal and it has to be generated by 1 , because $p(x)$ has no other divisors.

Question 2(c) Let F be a field of characteristic $p>0$. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in$ $F[x]$. Define $f^{\prime}(x)=a_{1}+2 a_{2} x+\ldots+n a_{n} x^{n-1}$. If $f^{\prime}(x)=0$, then prove that there exists $g(x)=F[x]$ such that $f(x)=g\left(x^{p}\right)=g(x)^{p}$.

Solution. $f^{\prime}(x)=0 \Leftrightarrow r a_{r}=0 \Leftrightarrow a_{r}=0$ when $r \not \equiv 0 \bmod p$. Thus $f(x)=\sum_{m=0}^{t} a_{m p} x^{m p}$ where $t=[n / p]$. Let $g(y)=a_{0}+a_{p} y+\ldots a_{t p} y^{t}$. Then $g\left(x^{p}\right)=f(x)=(g(x))^{p}$.

