UPSC Civil Services Main 1996 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let \mathbb{R} be the set of all real numbers and $G=\{(a, b) \mid a, b \in \mathbb{R}, a \neq 0\}$. Let $x: G \times G \longrightarrow G$ be defined by $(a, b) *(c, d)=(a c, b c+d)$. Show that $(G, *)$ is a group. Is it abelian? Is $(H, *)$ a subgroup of $(G, *)$ where $H=\{(1, b) \mid b \in \mathbb{R}\}$?

Solution.

1. $\alpha=(a, b) \in G, \beta=(c, d) \in G \Rightarrow \alpha * \beta \in G \because a c \neq 0$ when $a \neq 0, c \neq 0$.
2. $(a, b) *(1,0)=(a, b \cdot 1+0)=(a, b) .(1,0) *(a, b)=(a, 0 \cdot a+b)=(a, b)$. Hence $(1,0)$ is identity of G.
3. $(a, b) *(1 / a,-b / a)=(1, b / a-b / a)=(1,0) \cdot(1 / a,-b / a) *(a, b)=(1,(-a b / a)+b)=$ $(1,0)$. Thus the inverse exists for every $(a, b) \in G$.
4. $(a, b) *[(c, d) *(e, f)]=(a, b) *(c e, d e+f)=(a c e, b c e+d e+f) .[(a, b) *(c, d)] *(e, f)=$ $(a c, b c+d) *(e, f)=(a c e, b c e+d e+f)$. Thus $*$ is associative.

Hence G is a group.
G is not abelian: $(c, d) *(a, b)=(a c, d a+b)$. Thus if $(a, b) *(c, d)=(c, d) *(a, b)$, then $b c+d=d a+b$. This need not be true, for example if $a=d=1, b=0$.

If $(1, a),(1, b) \in H$, then $(1, a) *(1, b)=(1, a+b) \in H .(1,0) \in H$. Finally $(1, a)^{-1}=$ $(1,-a) \in H$, hence H is a subgroup of G.

Question 1(b) Let f be a homomorphism of a group G onto a group G^{\prime} with kernel H. For each subgroup K^{\prime} of G^{\prime}, define K as $K=\left\{x \mid x \in G, f(x) \in K^{\prime}\right\}$. Prove that

1. K^{\prime} is isomorphic to K / H.
2. G / K is isomorphic to G^{\prime} / K^{\prime}.

Solution.

1. Let $f^{*}: K \longrightarrow K^{\prime}, f^{*}$ is a restriction of $f . f^{*}$ is a homomorphism onto K^{\prime} (onto because given $y \in K^{\prime}, y \in G^{\prime} \Rightarrow \exists x \in G, f(x)=y$. This $x \in K$.). $\operatorname{ker}\left(f^{\prime}\right)=$ $\left\{x \mid x \in K, f(x)=e^{\prime}\right.$, the identity of $\left.G^{\prime}\right\}$. $\operatorname{ker}\left(f^{*}\right) \subseteq H$, but $H \subseteq K$, therefore $f(x)=f^{*}(x)=e^{\prime}$ for $x \in H$. Thus $H \subseteq \operatorname{ker}\left(f^{*}\right)$, that is $H=\operatorname{ker}\left(f^{*}\right)$. Thus $K / H \simeq K^{\prime}$ by the fundamental theorem of homomorphisms.
2. Let $\phi: G \longrightarrow G^{\prime} / K^{\prime}$ defined by $\phi(x)=f(x) K^{\prime}$. Now

- ϕ is a homomorphism: $\phi(x y)=f(x y) K^{\prime}=f(x) f(y) K^{\prime}=f(x) K^{\prime} f(y) K^{\prime}=$ $\phi(x) \phi(y)$.
- ϕ is onto: Let $y K^{\prime} \in G^{\prime} / K^{\prime}$. f is onto \Rightarrow there exists $x \in G$ such that $f(x)=y$. Note that $y \in G^{\prime}$. Then $\phi(x)=f(x) K^{\prime}=y K^{\prime} . \operatorname{ker}(\phi)=K \because x \in \operatorname{ker}(\phi) \Leftrightarrow$ $f(x) K^{\prime}=K^{\prime} \Leftrightarrow f(x) \in K^{\prime} \Leftrightarrow x \in K$. Thus $G / K \simeq G^{\prime} / K^{\prime}$.

Question 1(c) Prove that a normal subgroup H of a group G is maximal \Leftrightarrow the quotient G / H is simple.

Solution. Let G / H be simple. Let K be a normal subgroup of G such that $H \subseteq K$, $K \neq G$. Then K / H is a normal subgroup of $G / H . G / H$ is simple so K / H is identity or $K / H=G / H$. If K / H is identity, then $K=H$. If $K / H=G / H$ then $K=G$. Hence H is maximal.

Conversely, let H be maximal. Let H^{\prime} be a normal subgroup of G / H. Assume H^{\prime} is different from the identity of G / H, i.e. H^{\prime} contains at least one element different from the identity of G / H. We shall show that $H^{\prime}=G / H$, showing that G / H is simple.

Let $\eta: G \longrightarrow G / H$ be the natural homomorphism. Then

$$
\eta^{-1}\left(H^{\prime}\right)=\left\{x \mid x \in G, \eta(x)=H x \in H^{\prime}\right\}
$$

is a normal subgroup of G. $\eta^{-1}\left(H^{\prime}\right) \supseteq H$. By assumption, there exists $x \in G, x H \neq H$ such that $x H \in H^{\prime} \Rightarrow x \in \eta^{-1}\left(H^{\prime}\right)$ but $x \notin H$. Since H is maximal, $\eta^{-1}\left(H^{\prime}\right)=G \Rightarrow H^{\prime}=G / H$.

Question 2(a) In a ring R, prove that the cancellation law holds in $R \Leftrightarrow R$ has no zero divisors.

Solution. Let $a b=a c \Rightarrow b=c, a \neq 0$. Then R has no zero divisors because $a b=0=$ $a 0, a \neq 0 \Rightarrow b=0$.

Conversely $a b=a c \Rightarrow a(b-c)=0, a \neq 0 \Rightarrow b-c=0 \Rightarrow b=c$.

Question 2(b) If S is an ideal of R and T any subring of R then prove that S is an ideal of $S+T=\{s+t \mid s \in S, t \in T\}$.

Solution. The only thing we have to check is $\alpha \in S+T, a \in S \Rightarrow \alpha a \in S$ (the other condition $a, b \in S \Rightarrow a-b \in S$ is true). $\alpha=s+t, s \in S, t \in T$, thus $\alpha a=(s+t) a=s a+t a \in S$ because $s \in S, a \in S \Rightarrow s a \in S, t \in T \Rightarrow t \in R, a \in S \Rightarrow t a \in S \Rightarrow s a+t a \in S$.

Question 2(c) Prove that the polynomial $x^{2}+x+4$ is irreducible over the field of integers modulo 11 .

Solution. If $x^{2}+x+4$ were reducible modulo 11, then it would have a linear factor i.e. it would have a root in the field \mathbb{Z}_{11}. But

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad 0+0+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=1 \quad \Rightarrow \quad 1+1+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=2 \quad \Rightarrow \quad 4+2+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=3 \quad \Rightarrow \quad 9+3+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=4 \quad \Rightarrow \quad 16+4+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=5 \quad \Rightarrow \quad 25+5+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=6 \quad \Rightarrow \quad 36+6+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=7 \quad \Rightarrow \quad 49+7+4 \quad \not \equiv \quad 0 \quad \bmod 11 \\
& x=8 \quad \Rightarrow \quad 64+8+4 \quad \not \equiv \quad 0 \quad \bmod 11 \\
& x=9 \quad \Rightarrow \quad 81+9+4 \quad \not \equiv 0 \quad \bmod 11 \\
& x=10 \Rightarrow 100+10+4 \not \equiv 0 \bmod 11
\end{aligned}
$$

Therefore $x^{2}+x+4$ has no linear factor in $\mathbb{Z}_{11}[x]$ so it is irreducible in $\mathbb{Z}_{11}[x]$.

