UPSC Civil Services Main 1997 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Show that a necessary and sufficient condition for a subset H of a group G to be a subgroup is $H H^{-1}=H$.

Solution. Let H be a subgroup. Clearly $H \subseteq H H^{-1}$ because $h \in H$ can be written as $h=h e$ where $h \in H, e \in H^{-1} \Rightarrow h \in H H^{-1}$. If $x \in H H^{-1}$, then $x=h k^{-1}$ where $h, k \in H$. But H is a group, so $h k^{-1} \in H$, thus $H H^{-1} \subseteq H \Rightarrow H H^{-1}=H$.

Conversely, let $H=H H^{-1}$ and assume $H \neq \emptyset$.

1. $a \in H \Rightarrow a^{-1} \in H^{-1} \Rightarrow a a^{-1} \in H H^{-1}=H \Rightarrow e \in H$.
2. $x, y \in H \Rightarrow x y^{-1} \in H$. Thus $x \in H \Rightarrow x^{-1}=e x^{-1} \in H . x, y \in H \Rightarrow y^{-1} \in H \Rightarrow y \in$ $H^{-1} \Rightarrow$ xyin H.
Thus H is a subgroup of G.
Question 1(b) Show that the order of each subgroup of a finite group is a divisor of the order of the group.

Solution. Lagrange's theorem, see Theorem 2.4.1 page 41 of Algebra by Herstein.
Question 1(c) In a group G, the commutator of $(a, b), a, b \in G$ is the element $a b a^{-1} b^{-1}$ and the smallest subgroup containing all commutators is called the commutator subgroup of G. Show that a quotient group G / H is abelian $\Leftrightarrow H$ contains the commutator subgroup of G.

Solution. Let G / H be abelian. Then $H a H b=H b H a \Rightarrow H a b=H b a \Rightarrow H a b a^{-1} b^{-1}=$ $H \Rightarrow a b a^{-1} b^{-1} \in H$. This means H contains all the commutators, and therefore contains the group generated by them (i.e. the commutator subgroup).

Conversely, if H contains the commutator subgroup, then for any $a, b \in G, a b a^{-1} b^{-1} \in$ $H \Rightarrow H a b a^{-1} b^{-1}=H \Rightarrow H a b=H b a \Rightarrow H a H b=H b H a \Rightarrow G / H$ is abelian.

Question 2(a) If $x^{2}=x$ for all x in a ring R, show that R is commutative. Give an example to show that the converse is not true.

Solution. $a+b=(a+b)^{2}=(a+b)(a+b)=a^{2}+a b+b a+b^{2}=a+a b+b a+b$. Thus $a b+b a=0$. Setting $a=b$, we get $2 b^{2}=0 \Rightarrow 2 b=0$. Thus $a b=-2 b a+b a \Rightarrow a b=b a$. Thus R is commutative.

Converse is not true $-\mathbb{Z}$ is commutative but $n^{2} \neq n$ for $n \neq 0,1$.

Question 2(b) Show that an ideal S of the ring of integers \mathbb{Z} is a maximal ideal $\Leftrightarrow S$ is generated by a prime integer.

Solution. Let S be maximal. Since \mathbb{Z} is a PID, we have $S=\langle q\rangle$ for some $q \in \mathbb{Z}, q \neq 0,1,-1$. We will prove that if $q \mid a b, q \nmid a$ then $q \mid b$ showing that q is prime. Since $q \nmid a$, we have $a \notin S$. Consider the ideal generated by S and a. It is \mathbb{Z}, because S is maximal. $\langle S, a\rangle=\mathbb{Z} \Rightarrow 1=\alpha+t a, \alpha \in S$. Thus $1=x q+t a, \alpha=x q$. Hence $b=x b q+t a b$. Clearly $q \mid$ RHS, so $q \mid b \Rightarrow q$ is a prime.

Conversely let $S=\langle p\rangle$ where p is a prime. We wish to show that S is maximal. Let A be an ideal, $A \supset S$ and $A \neq S$, then we shall show that $A=\mathbb{Z}$. Since $A \supset S, \exists a \in A, a \notin S$. Now $a \notin S \Leftrightarrow p \nmid a \Leftrightarrow(a, p)=1 \Leftrightarrow x a+y p=1$ for some $x, y \in \mathbb{Z} \Rightarrow 1 \in A(\because a \in A \Rightarrow x a \in$ $A, p \in A \Rightarrow y p \in A)$. Hence $\mathbb{Z}=A$, so S is a maximal ideal.

Question 2(c) Show that in an integral domain every prime element is irreducible. Give an example to show that the converse is not true.

Solution. Let R be an integral domain with unity. Let p be a prime element of R i.e. if $p \mid a b$ then $p \mid a$ or $p \mid b$. We have to show that if $a \mid p$ then either a is an associate of p or a is a unit. If $a \mid p$, then $p=a b$ for some $b \in R$. But p is a prime, therefore $p=a b \Rightarrow p|a b \Rightarrow p| a$ or $p \mid b$. If $p \mid a$, then p is an associate of a as $a \mid p$. If $p \mid b$, then $b=p x$ for some $x \in R$. Thus $p=p a x \Rightarrow a x=1$ as R is an integral domain, thus a is a unit. Hence a prime element is irreducible.

The converse is not true. Let R be an integral domain which is not a unique factorization domain e.g. $R=\mathbb{Z}[\sqrt{-5}]$. For $\alpha=a+b \sqrt{-5}, N(\alpha)=a^{2}+5 b^{2}$. 2 is an irreducible element of $R-2=\alpha \beta \Rightarrow N(\alpha) N(\beta)=4 \Rightarrow N(\alpha)=1,2,4 . \quad N(\alpha)=1 \Rightarrow \alpha$ is a unit, because if $\alpha=a+b \sqrt{-5}$ then $a^{2}+5 b^{2}=1 \Rightarrow b=0, a= \pm 1 \Rightarrow a$ is a unit. If $N(\alpha)=4$, then $N(\beta)=1$ so β is a unit. $N(\alpha)=2$ is impossible as $a^{2}+5 b^{2}=2$ is not possible.

Now 2 is not prime $-2 \mid(1+\sqrt{-5})(1-\sqrt{-5})$. But $2 \nmid 1+\sqrt{-5}$ because $(1+\sqrt{-5})=$ $2 \alpha=2(a+b \sqrt{-5}) \Rightarrow 2 a=1$, which is not possible. Similarly $2 \nmid 1-\sqrt{-5}$. So 2 is not prime.

