UPSC Civil Services Main 1998 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Prove that if a group has only 4 elements then it must be abelian.
Solution. Let G be a group of order 4. If it has an element of order 4, then G is cyclic and therefore abelian. If G has no elements of order 4, then the order of all elements other than identity is 2 because the order of an element must be a divisor of 4 . Let $x, y i n G$, then $(x y)^{2}=x y x y=e \Rightarrow y x=x^{-1} e y^{-1}=x^{-1} y^{-1}=x y$ because $x^{-1}=x, y^{-1}=y$. Hence $x y=y x$ for every $x, y \in G$ so G is abelian.

Question 1(b) If H and K are subgroups of G then show that $H K$ is a subgroup of G if and only if $H K=K H$.
Solution. See Lemma 2.5.1 page 44 of Algebra by Herstein.
Question 1(c) Show that every group of order 15 has a normal subgroup of order 5 .
Solution. By Sylow's theorem a group G of order 15 has a subgroup of order 5. Again by one of Sylow's theorems the number of subgroups is $\equiv 1 \bmod 5$, and this number divides 3 . Therefore there is exactly 1 subgroup of order 5 , say H. Now $a H^{-1}$ is also a subgroup of G of order 5 , but H is the only such subgroup, so $a H a^{-1}=H$, hence H is a normal subgroup. Hence every group of order 15 has a normal subgroup of order 5.

Question 2(a) Let $(R,+,$.$) be a system satisfying all the axioms for a ring with unity with$ the possible exception of $a+b=b+a$. Prove that $(R,+,$.$) is a ring.$
Solution. Let e denote unity of R. Then $(a+b)(e+e)=a(e+e)+b(e+e)=a e+(a+b) e+b e$. Also $(a+b)(e+e)=(a+b) e+(a+b) e=a e+b e+a e+b e$. Thus $a e+b e=b e+a e \Rightarrow a+b=b+a$. Thus R is a ring.

A similar question is the following. Let $(R,+,$.$) be a system satisfying all the axioms for$ a ring with the possible exception of $a+b=b+a$. If there is an element $c \in R$ such that $a c=b c \Rightarrow a=b$ for every $a, b \in R$, then show that R is a ring.

Question 2(b) If p is a prime then prove that \mathbb{Z}_{p} is a field. Discuss the case when p is not a prime.

Solution. \mathbb{Z}_{p} is a commutative ring with unity. Let $[a] \in \mathbb{Z}_{p}$ such that $a \not \equiv 0 \bmod p$ i.e. $\quad[a] \neq[0]$. Let $\left\{\left[x_{1}\right], \ldots,\left[x_{p}\right]\right\}=\mathbb{Z}_{p}$. Then $[a]\left[x_{1}\right], \ldots,[a]\left[x_{p}\right]$ are all distinct, since $[a]\left[x_{i}\right]=[a]\left[x_{j}\right] \Rightarrow a\left(x_{i}-x_{j}\right) \equiv 0 \bmod p \Rightarrow x_{i} \equiv x_{j} \bmod p$ because $a \not \equiv 0 \bmod p$. Thus there exists k such that $[a]\left[x_{k}\right]=[1] \Rightarrow$ every non-zero element in \mathbb{Z}_{p} has an inverse. Thus $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p}-\{[0]\}$ is a group, so \mathbb{Z}_{p} is a field.

If p is not prime, then \mathbb{Z}_{p} is not even an integral domain - if $p=n_{1} n_{2}, n_{1}>1, n_{2}>1$, then $\left[n_{1}\right]\left[n_{2}\right]=[0]$, but $\left[n_{1}\right] \neq[0],\left[n_{2}\right] \neq[0]$ in \mathbb{Z}_{p}.

See corollary to Lemma 3.2.2 page 128 of Algebra by Herstein.
Question 2(c) Let D be a principal ideal domain. Show that every element that is neither 0 nor a unit in D is a product of irreducible elements.

Solution.

1. If $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{k} \subseteq A_{k+1} \subseteq \ldots$ is an ascending chain of ideals, then there exists an integer m thus that $A_{m}=A_{m+1}=\ldots$..
Proof: Let $A=\bigcup_{i=1}^{\infty} A_{i}$, then we will show that A is an ideal - If $a, b \in A$, then $a \in A_{r}$ for some r, and $b \in A_{s}$ for some s. Hence $a, b \in A_{s}$ if $s \geq r$ (say), thus $a-b \in A_{s}$ because A_{s} is an ideal $\Rightarrow a-b \in A$. Let $a \in A, d \in D \Rightarrow a \in A_{r} \Rightarrow r a \in A_{r}$ because A_{r} is an ideal $\Rightarrow r a \in A$. Thus A is an ideal. Since D is a PID, $A=\langle a\rangle$, i.e. a generates A. By definition of A, there exists m s.t. $a \in A_{m}$. Thus $A=A_{m}=A_{m+1}=\ldots \subset=A$.
2. Every nonzero, non-unit element in D is divisible by an irreducible element.

Proof: Let $a \in D, a \neq 0, a$ non-unit. If a is not irreducible then we have nothing to prove. If a is irreducible, then a has a proper divisor, say $a_{1} \Rightarrow\left\langle a_{1}\right\rangle \subset\langle a\rangle$. Continuing this process, we have a_{2}, a_{3}, \ldots, such that a_{s} divides a_{s-1} for $s=1,2, \ldots$, where $a_{0}=a$. But this sequence must terminate i.e. $\exists m$ such that $\left\langle a_{m}\right\rangle=\left\langle a_{m+1}\right\rangle=\ldots$ because of step 1. But this means that a_{m} has no proper factors i.e. a_{m} is irreducible.
3. Let $a \in D, a$ non-unit. If a is irreducible, there is nothing to prove. If not, by step $2, a=p_{1} a_{1}$ where p_{1} is irreducible, and $a_{1} \mid a$ properly. If a_{1} is a unit, then a is a product of irreducible factors. If not, then $a_{1}=p_{2} a_{2}$ where $a_{2} \mid a_{1}$ properly. But this process cannot go on forever, by the same argument as in step 2. Thus we must have an integer k such that $a=p_{1} p_{2} \ldots p_{k} a_{k}$ where a_{k} is a unit. Thus a is a product of irreducible elements.

