UPSC Civil Services Main 2000 - Mathematics Algebra

Brij Bhooshan
Asst. Professor

B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let n be a fixed positive integer and let \mathbb{Z}_{n} be the ring of integers modulo n. Let

$$
G=\left\{[a] \in \mathbb{Z}_{n} \quad \mid \quad a \neq 0,(a, n)=1\right\}
$$

Show that G is a group under multiplication defined in \mathbb{Z}_{n}. Hence or otherwise show that $a^{\phi(n)} \equiv 1 \bmod n$ for all integers a relatively prime to n, where $\phi(n)$ denotes the number of positive integers that are less than n and relatively prime to n.

Solution. The only thing we have to show is that every element in G is invertible as we already know that G is multiplicatively closed, and has identity element namely [1]. Let $a_{1}, \ldots, a_{m}, m=\phi(n)$ be representatives of prime residue classes modulo n. Let a be any integer such that $(a, n)=1$, i.e. a is coprime with n. Then $\left[a a_{1}\right],\left[a a_{2}\right], \ldots,\left[a a_{m}\right]$ are all distinct because $a a_{i} \equiv a a_{j} \bmod n \Rightarrow a\left(a_{i}-a_{j}\right) \equiv 0 \bmod n$, but $(a, n)=1$, therefore $a_{i}-a_{j} \equiv \bmod n$, which is not true. Thus there exists a j such that $a a_{j} \equiv 1 \bmod n$, note that $G=\left\{\left[a_{1}\right],\left[a_{2}\right], \ldots,\left[a_{m}\right]\right\}=\left\{\left[a a_{1}\right],\left[a a_{2}\right], \ldots,\left[a a_{m}\right]\right\}$ and $[1] \in G$. Consequently $[a]$ is invertible, in fact $[a]\left[a_{j}\right]=[1]$.

We know that if G is a group of order n, then $x \in G \Rightarrow x^{n}=e$ for every $x \in G$, where e is the identity of G - consider H the cyclic subgroup of G generated by x. Using Lagrange's theorem, which says that the order of a subgroup divides the order of a group if the group is finite, we get $o(x)=o(H) \mid o(G)=n$. Thus $n=o(x) k$, so $x^{n}=x^{o(x) k}=e^{k}=e$.

Thus if a is any integer such that $(a, n)=1$, then $[a] \in G \Rightarrow[a]^{\phi(n)}=[1]$ because $o(G)=\phi(n)$. Hence $a^{\phi(n)} \equiv 1 \bmod n$.

Question 1(b) Let M be a subgroup and N a normal subgroup of a group G. Show that $M N$ is a subgroup of G and $M N / N$ is isomorphic to $M / M \cap N$.

Solution.

1. $M N \neq \emptyset$
2. $x, y \in M N \Rightarrow x=m_{1} n_{1}, y=m_{2} n_{2}$ where $m_{1}, m_{2} \in M, n_{1}, n_{2} \in N$. Then $x y=$ $m_{1} n_{1} m_{2} n_{2}=m_{1} m_{2} m_{2}^{-1} n_{1} m_{2} n_{2}$. Since N is a normal subgroup, $m_{2}^{-1} n_{1} m_{2} \in N$, therefore $x y=m_{1} m_{2} n_{1}^{*} n_{2}$ where $n_{1}^{*}=m_{2}^{-1} n_{1} m_{2}$, showing that $x y \in M N$.
3. $x \in M N \Rightarrow x^{-1}=n_{1}^{-1} m_{1}^{-1}=m_{1}^{-1} m_{1} n_{1}^{-1} m_{1}^{-1} \in M N$

Thus $M N$ is a subgroup of G.
Consider the function $f: M \longrightarrow M N / N$ defined by $f(m)=m N$. Then

1. $f\left(m_{1} m_{2}\right)=m_{1} m_{2} N=m_{1} N m_{2} N=f\left(m_{1}\right) f\left(m_{2}\right)$ as N is a normal subgroup.
2. f is onto. If $x N$ is any element of $M N / N$ where $x=m n$, then $x N=m n N=m N=$ $f(m)$.
3. $\operatorname{ker} f=\{m \mid f(m)=m N=N \Leftrightarrow m \in N\}=M \cap N$.

Thus f is a homomorphism, and by the fundamental theorem of homomorphisms, $M / M \cap$ $N \simeq M N / N$.

Question 2(a) Let F be a finite field. Show that the characteristic of F must be a prime integer p and the number of elements in F must be p^{m} for some positive integer m.

Solution. Let characteristic $F=n$. Let $n=\lambda \mu$ and let $a \in F, a \neq 0,0=n a^{2}=\lambda a \mu a=$ $0 \Rightarrow \lambda a=0$ or $\mu a=0$. Suppose $\lambda a=0$. Then for any $b \in F, b \neq 0, \lambda a b=a \cdot \lambda b=0 \Rightarrow \lambda b=0$ because $a \neq 0$. Thus $\lambda x=0$ for every $x \in F$, so $\lambda=n$ because n is the smallest such integer. Thus if $n=\lambda \mu$, then $\lambda=n$ or $\mu=n$, so n is prime, say p.

Consider the mapping $f: \mathbb{Z} \longrightarrow F$ defined by $f(n)=n e$ where e is the multiplicative identity of F. It is obvious that f is a homomorphism, and that ker f is $\langle p\rangle$, the ideal generated by p. Thus $\mathbb{Z} /\langle p\rangle$ is isomorphic to a subfield of F. In other words F contains a field Λ having p elements. If $(F: \Lambda)=m$, then F has p^{m} elements. For details see question 2(c)(ii) year 2002 .

Question 2(b) Let F be a field and $F[x]$ denote the set of all polynomials defined over F. If $f(x)$ is an irreducible polynomial in $F[x]$, show that the ideal $\langle f(x)\rangle$ generated by $f(x)$ in $F[x]$ is maximal and $F[x] /\langle f(x)\rangle$ is a field.

Solution. Let A by an ideal, $A \supset\langle f(x)\rangle$. Since $F[x]$ is a principal ideal domain, let $A=\langle g(x)\rangle$. Then $A \supset\langle f(x)\rangle \Rightarrow f(x)=g(x) h(x)$. But $f(x)$ is irreducible, so either $g(x)$ is a unit or $g(x)$ is an associate of $f(x)$. Thus $\langle g(x)\rangle=F[x]$ or $\langle g(x)\rangle=\langle f(x)\rangle \Rightarrow\langle f(x)\rangle$ is maximal.

In order to show that $F[x] /\langle f(x)\rangle$ is a field, the only thing we have to show is that any non-zero element in $F[x] /\langle f(x)\rangle$ is invertible. Let $g(x)+\langle f(x)\rangle$ be any non-zero element in $F[x] /\langle f(x)\rangle$ i.e. $f(x) \nmid g(x)$. This means that $f(x), g(x)$ are comprime, therefore there exist
$a(x), b(x)$ such that $a(x) g(x)+b(x) f(x)=1$. Consequently $a(x) g(x) \equiv 1 \bmod f(x)$, thus $g(x)+\langle f(x)\rangle$ has $a(x)+\langle f(x)\rangle$ as an inverse in $F[x] /\langle f(x)\rangle$.

Alternately, let $g(x)$ be as above. Consider $M=$ ideal generated by $f(x), g(x)$. Since $f(x) \nmid g(x), M \neq\langle f(x)\rangle$, and as $\langle f(x)\rangle$ is maximal, $M=F[x]$. Thus there exists $a(x), b(x) \in$ $F[x]$ such that $a(x) g(x)+b(x) f(x)=1$ and we get the same conclusion as above.

Question 2(c) Show that a finite commutative ring with no zero divisors must be a field.
Solution. See Lemma 3.2.2 page 127 of Algebra by Herstein.

