UPSC Civil Services Main 2001 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let K be a field and G be a finite subgroup of the multiplicative group of the non-zero elements of K. Show that G is a cyclic group.

Solution. Let $a \in G$ be chosen that $o(a) \geq o(b) \forall b \in G$ - this is possible because G is finite. We shall show that $G=\langle a\rangle$.

Step 1. For any $b \in G, o(b) \mid o(a)$. If not, there exists an element $b \in G$ s.t. $o(b)=$ $p^{l} r,(p, r)=1, o(a)=p^{m} s,(p, s)=1$ where $l>m \geq 0$, because if all primes occurring in $o(b)$ have power less than that occurring in $o(a)$, then $o(b) \mid o(a)$. Define $x=b^{r}, y=a^{p^{m}} \Rightarrow$ $o(x)=p^{l}, o(y)=s \Rightarrow o(x y)=p^{l} s(\because(o(x), o(y))=1, x y=y x) \Rightarrow o(x y)>o(a)$ which is a contradiction. Hence $o(b) \mid o(a)$.

Step 2. If $o(a)=n$, then $b^{n}=1 \forall b \in G$. Thus all elements of G are roots of $x^{n}-1=0$. But this equation has at most n roots in K, thus $|G| \leq n$. But $o(a)=n \therefore 1, a, \ldots, a^{n-1}$ are all distinct in G. Therefore $o(G) \geq n$.

Thus $o(G)=n \Rightarrow\langle a\rangle=G$ so G is cyclic.
Question 1(b) Prove that the polynomial $1+x+\ldots x^{p-1}$, where p is a prime number, is irreducible over the field of rational numbers.
Solution. $f(x)$ is irreducible $\Longleftrightarrow f(1+x)$ is irreducible. $f(x)=\frac{x^{p}-1}{x-1}$. Thus

$$
\begin{aligned}
f(1+x) & =\frac{(x+1)^{p}-1}{x} \\
& =\frac{x^{p}+\binom{p}{1} x^{p-1}+\binom{p}{2} x^{p-2}+\ldots+\binom{p}{p-1} x}{x} \\
& =x^{p-1}+\binom{p}{1} x^{p-2}+\binom{p}{2} x^{p-3}+\ldots+\binom{p}{r} x^{p-r-1}+\ldots+\binom{p}{p-1}
\end{aligned}
$$

Now $p \left\lvert\,\binom{ p}{r}\right.$ for $r=1,2, \ldots, p-1$, as $\binom{p}{r}=\frac{p!}{r!(p-r)!}$, and $p \mid p!$, but $p \nmid r!, p \nmid(p-r)!$. Thus the Eisenstein criterion gives the result.

For more information log on www.brijrbedu.org.

Question 2(a) Let N be a normal subgroup of a group G. Show that G / N is abelian \Leftrightarrow for all $x, y \in G, x y x^{-1} y^{-1} \in N$.

Solution. Let G / N be abelian, then $x N y N=y N x N \Rightarrow x y N=y x N \Rightarrow x^{-1} y^{-1} x y N=$ $N \Rightarrow x^{-1} y^{-1} x y \in N$.

Conversely, $x y x^{-1} y^{-1} \in N \Rightarrow x y x^{-1} y^{-1} N=N \Rightarrow x^{-1} y^{-1} N=y^{-1} x^{-1} N \Rightarrow x^{-1} N y^{-1} N=$ $y^{-1} N x^{-1} N$. Thus G / N is abelian.

Question 2(b) If R is a commutative ring with unit element and M is an ideal of R, show that M is a maximal ideal of R if and only if R / M is a field.

Solution. Theorem 3.51, page 139 of Algebra by Herstein.

Question 2(c) Prove that every finite extension of a field is an algebraic extension. Give an example to show that the converse is not true.

Solution. Let $K \mid k$ be a finite extension. Let $(K: k)=n$ i.e. dimension of K as a vector space over k is n. Let $\alpha \in K, \alpha \neq 0$, then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$ are linearly dependent, i.e. there exist $a_{0}, a_{1}, \ldots, a_{n} \in k$ with at least one $a_{i} \neq 0$ such that $a_{0}+a_{1} \alpha+\ldots+a_{n} \alpha^{n}=0$ i.e. α is a root of $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with coefficients from k. Thus $K \mid k$ is an algebraic extension of k as every element of K is algebraic over k.

Example: Let $K=\mathbb{Q}\left(2^{1 / n}, n=2,3,4, \ldots\right) . K \mid \mathbb{Q}$ is algebraic but $(K: \mathbb{Q})$ is not finite. If $(K: \mathbb{Q})=r$ then $2^{1 / n}$ for $n>r+1$ is a root of the polynomial of degree $\leq r+1$, which is not possible because $2^{1 / n}$ is a root of $x^{n}-2=0$ which is an irreducible polynomial over \mathbb{Q}, showing that $2^{1 / n}$ cannot be a root of a polynomial of degree $<n$.
$K \mid \mathbb{Q}$ is algebraic because every element is contained in a field L such that $\mathbb{Q} \subseteq L \subset K$ and $(L: \mathbb{Q})<\infty \Rightarrow \alpha$ is algebraic over \mathbb{Q}.

