UPSC Civil Services Main 2003 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) If H is a subgroup of a group G such that $x^{2} \in H$ for every $x \in G$ then prove that H is a normal subgroup of G.

Solution. Let $h \in H, g \in G$. Then $h\left(h^{-1} g^{-1}\right)^{2} g^{2}\left(g^{-1} h g\right)^{2}=h h^{-1} g^{-1} h^{-1} g^{-1} g^{2} g^{-1} h g g^{-1} h g=$ $g^{-1} h g$. Now $x \in G \Rightarrow x^{2} \in H$, therefore $\left(h^{-1} g^{-1}\right)^{2}, g^{2},\left(g^{-1} h g\right)^{2} \in H$ Consequently for any $h \in H, g^{-1} h g \in H$. Thus H is a normal subgroup of G.

Alternative solution. We shal prove that $H x=x H$ for every $x \in G$. Clearly for any $h \in H, x h=x h . x h . h^{-1} x^{-1} x^{-1} x=h_{1} x$, where $h_{1}=(x h)^{2} h^{-1} x^{-2} \in H$, this shows that $x H \subseteq H x$. Similarly $h x=x x^{-1} x^{-1} h^{-1} h x h x=x h_{1}$ with $h_{1}=x^{-2} h^{-1}(h x)^{2} \in H$. Thus $H x \subseteq x H$, so $x H=H x$ for every $x \in G$. Hence H is a normal subgroup of G.

Question 1(b) Show that the ring $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}, i=\sqrt{-1}\}$ of Gaussian integers is a Euclidean domain.

Solution. For $\alpha=a+i b \in \mathbb{Z}[i]$, we define $N(\alpha)=a^{2}+b^{2}$. Clearly (i) $N(\alpha)>0$ for $\alpha \neq 0$, (ii) For $\alpha \neq 0, \beta \neq 0, N(\alpha \beta)=N(\alpha) N(\beta)$. Let $\alpha=a+i b, \beta=c+i d \neq 0$. We shall find $\gamma, \delta \in \mathbb{Z}[i]$ such that $\alpha=\beta \gamma+\delta$ where $\delta=0$ or $N(\delta)<N(\beta)$. This will prove $\mathbb{Z}[i]$ is a Euclidean domain for the Euclidean function $N(\alpha)$.

$$
\frac{\alpha}{\beta}=\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{c^{2}+d^{2}}=p+i q
$$

where p, q are rational numbers. We determine integers x, y so that $|p-x| \leq \frac{1}{2},|q-y| \leq \frac{1}{2}$ - x, y are the integers nearest to p, q respectively. Let $\gamma=x+i y$. Then

$$
\frac{\alpha}{\beta}=\gamma+(p-x)+(q-y) i \Rightarrow \alpha=\beta \gamma+\beta \eta=\beta \gamma+\delta
$$

where $\delta=\beta \eta$. Clearly $\delta=\alpha-\beta \gamma$ is a Gaussian integer, and if $\delta \neq 0$, then $N(\delta)=$ $N(\beta)\left[(p-x)^{2}+(q-y)^{2}\right] \leq N(\beta)\left[\frac{1}{4}+\frac{1}{4}\right]<N(\beta)$. This completes the proof.

For more information log on www.brijrbedu.org.

Question 2(a) 1. Let R be the ring of all real-valued continuous functions on the closed interval $[0,1]$. Let $M=\left\{f(x) \in R \left\lvert\, f\left(\frac{1}{3}\right)=0\right.\right\}$. Show that M is a maximal ideal of R.
2. Let M, N be two ideals of a ring R. Show that $M \cup N$ is an ideal of R if and only of either $M \subseteq N$ or $N \subseteq M$.

Solution.

1. M is an ideal. $M \neq \emptyset$ since the function $f(x)=0$ clearly belongs to M.

Let $f, g \in M$ then the function $(f-g)(x)=f(x)-g(x)$ is continuous everywhere on $[0,1]$ and $(f-g)\left(\frac{1}{3}\right)=f\left(\frac{1}{3}\right)-g\left(\frac{1}{3}\right)=0$, so $f-g \in M$. Thus M is a subgroup of the group $(R,+)$.
If $g \in M$ and $f \in R$, then the function $(f g)(x)=f(x) g(x)$ is continuous everywhere on $[0,1]$ and $(f g)\left(\frac{1}{3}\right)=f\left(\frac{1}{3}\right) g\left(\frac{1}{3}\right)=0$ as $g\left(\frac{1}{3}\right)=0$, thus $f g \in M$. Thus M is an ideal of R. Note that R is a commutative ring with unity I, where $I(x)=1$.

Let $M \subseteq A \subseteq R$ where A is an ideal of R. If $M \neq A$, we shall show that $A=R$. Let $\beta \in A-M$, thus $\beta\left(\frac{1}{3}\right)=c \neq 0$. Define $\alpha:[0,1] \longrightarrow[0,1]$ by $\alpha(x)=c$ for all $x \in[0,1]$. Then the function $\mu=\beta-\alpha \in M \subset A$ as $\mu\left(\frac{1}{3}\right)=0$. Thus $\alpha=\beta-\mu \in A$ as $\beta, \mu \in A$. Now consider $\gamma:[0,1] \longrightarrow[0,1]$ defined by $\gamma(x)=\frac{1}{c}$ for all x. Clearly $\gamma \in R$. Since A is an ideal, $\gamma \alpha \in A$. But $\gamma \alpha(x)=\frac{1}{c} c=1$, thus $\gamma \alpha=I \in A$. Since I is unity in R, it follows that $A=R$, hence M is a maximal ideal of R.
Note: The converse of the above statement is also true i.e. if M is a maximal ideal of R, then there exists number $r \in[0,1]$ such that $M=\{f \mid f \in R, f(r)=0\}$. The proof needs compactness of $[0,1]$ which is not an algebraic concept.
2. If $M \subseteq N$, then $M \cup N=N$ and if $N \subseteq M$, then $M \cup N=M$, so in both cases $M \cup N$ is an ideal of R.

Conversely, let $M \cup N$ be an ideal of R. If possible, let us assume that $M \nsubseteq N$ and $N \nsubseteq M$, this means there exist $x \in M-N, y \in N-M$. Now $x \in M, y \in N \Rightarrow x, y \in$ $M \cup N$. But $M \cup N$ is an ideal, thus $x-y \in M \cup N$, hence $x-y \in M$ or $x-y \in N$. If $x-y \in M$, then $x-(x-y)=y \in M$ as M is an ideal, but this is a contradiction. If $x-y \in N$, then $(x-y)+y=x \in N$, which is also not possible. Thus our assumption that $M \nsubseteq N$ and $N \nsubseteq M$ is incorrect, so if $M \cup N$ is an ideal, either $M \subseteq N$ or $N \subseteq M$.

Question 2(b) 1. Show that $\mathbb{Q}(\sqrt{3}, i)$ is the splitting field for $x^{5}-3 x^{3}+x^{2}-3$ where \mathbb{Q} is the field of rational numbers.
2. Prove that $x^{2}+x+4$ is irreducible over F, the field of integers modulo 11 and prove further that $F[x] /\left\langle x^{2}+x+4\right\rangle$ is a field with 121 elements.

Solution.

1. $x^{5}-3 x^{3}+x^{2}-3=x^{3}\left(x^{2}-3\right)+x^{2}-3=\left(x^{2}-3\right)\left(x^{3}+1\right)=\left(x^{2}-3\right)(x+1)\left(x^{2}-x+1\right)$. Thus the roots of $x^{5}-3 x^{3}+x^{2}-3$ are $-1, \pm \sqrt{3}, \frac{1 \pm i \sqrt{3}}{2}$. Consequently all the roots of the given polynomial lie in the field $\mathbb{Q}(\sqrt{3}, i)$. Conversely, if K is any field containing \mathbb{Q}, which contains the roots of the given polynomial, then $\sqrt{3} \in K$, and therefore $i \in K$, thus $\mathbb{Q}(\sqrt{3}, i) \subseteq K$. Thus $\mathbb{Q}(\sqrt{3}, i)$ is the smallest field containing all the roots of $x^{5}-3 x^{3}+x^{2}-3$. Thus $\mathbb{Q}(\sqrt{3}, i)$ is the splitting field of the given polynomial over \mathbb{Q}.
2. See question 2(c) from 1996 for the irreducibility of $x^{2}+x+4$ over F.

See question 2(b) from 1992 for the second part.

Question 2(c) If R is a unique factorization domain (UFD), then prove that $R[x]$ is also a UFD.

Solution. Let F denote the field of quotients of R.
Result 1. If $f(x) \in R[x]$ is irreducible, then $f(x)$ remains irreducible in $F[x]$. (Note that the converse is obvious as $R[x] \subseteq F[x]$.) Let $f(x)$ be reducible in $F[x]$ i.e. $f(x)=g(x) h(x)$, where $\operatorname{deg} g(x)<\operatorname{deg} f(x), \operatorname{deg} h(x)<\operatorname{deg} f(x)$ and $g(x), h(x) \in F[x]$. We can write $g(x)=$ $a_{1} b_{1}^{-1} g_{1}(x), h(x)=a_{2} b_{2}^{-1} h_{1}(x)$, where $g_{1}(x), h_{1}(x) \in R[x]$ and are primitive and $a_{1}, b_{1}, a_{2}, b_{2} \in$ R (b_{1} is the LCM of all the denominators of $g(x)$, and a_{1} is the GCD of the numerators). Thus $b_{1} b_{2} f(x)=a_{1} a_{2} g_{1}(x) h_{1}(x)$. But by Gauss Lemma, the product of two primitive polynomials is primitive, therefore $g_{1}(x) h_{1}(x)$ is primitive. Since $f(x)$ is irreducible in $R[x]$, therefore it is also primitive. Consequently $b_{1} b_{2}=$ content of $b_{1} b_{2} f(x)=a_{1} a_{2}=$ content of $a_{1} a_{2} g(x) h(x)$ and therefore we get $f(x)=g_{1}(x) h_{1}(x)$, thus $f(x)$ is reducible in $R[x]$. Hence if $f(x)$ is irreducible in $R[x]$ then it is irreducible in $F[x]$.

Result2. Factorization exists in $R[x]$. Let $f(x) \in R[x], f(x) \neq 0$ and $f(x)$ not a unit. Let $a=c(f)=$ content of f then $f=a f^{*}$ where f^{*} is a primitive polynomial in $R[x]$ of the same degree as f. Since $F[x]$ is a UFD (being a Euclidean domain), we can write $f^{*}(x)=$ $p_{1}(x) \ldots p_{r}(x)$, where each $p_{i}(x)$ is an irreducible element of $F[x]$. Let $p_{i}(x)=a_{i} b_{i}^{-1} q_{i}(x)$, where $a_{i}, b_{i} \in R$, and $q_{i}(x) \in R[x]$ is a primitive polynomial. Thus we get

$$
b_{1} \ldots b_{r} f^{*}(x)=a_{1} \ldots a_{r} q_{1}(x) \ldots q_{r}(x)
$$

But the product $q_{1}(x) \ldots q_{r}(x)$ is again primitive (Gauss Lemma), therefore equating the contents of both sides (note that $f^{*}(x)$ is primitive), we get $b_{1} \ldots b_{r}=a_{1} \ldots a_{r}$, therefore

$$
f^{*}(x)=q_{1}(x) \ldots q_{r}(x)
$$

where each $q_{i}(x) \in R[x]$ and is irreducible in $F[x]$ and therefore irreducible in $R[x]$. Since R is a UFD, $a=\pi_{1} \ldots \pi_{t}$, where π_{1}, \ldots, π_{t} are irreducible in R. Thus

$$
f(x)=\pi_{1} \ldots \pi_{t} q_{1}(x) \ldots q_{r}(x)
$$

where $\pi_{1}, \ldots, \pi_{t}, q_{1}(x), \ldots, q_{r}(x)$ are irreducible elements of $R[x]$. Note that π_{1}, \ldots, π_{t} being constants cannot have a proper factorization in $R[x]$ if they do not have one in R. Hence the result is established.

Result 3. Uniqueness. If possible, let

$$
\pi_{1} \ldots \pi_{t} q_{1}(x) \ldots q_{r}(x)=\pi_{1}^{\prime} \ldots \pi_{u}^{\prime} g_{1}(x) \ldots g_{s}(x)
$$

where $\pi_{1}, \ldots, \pi_{t}, \pi_{1}^{\prime}, \ldots, \pi_{u}^{\prime}$ are irreducible elements in R and $q_{1}(x) \ldots q_{r}(x), g_{1}(x) \ldots g_{s}(x)$ are irreducible elements of $R[x]$. Using Gauss Lemma, we get that the products $q_{1}(x) \ldots q_{r}(x)$, $g_{1}(x) \ldots g_{s}(x)$ are primitive. Comparing the contents of both sides, we get $\pi_{1} \ldots \pi_{t}=$ $\pi_{1}^{\prime} \ldots \pi_{u}^{\prime}$. But R is a UFD, so $t=u$, and we can reorder the π_{i}^{\prime} to ensure that each π_{i} is an associate of π_{i}^{\prime}. Thus we are left with $q_{1}(x) \ldots q_{r}(x)=g_{1}(x) \ldots g_{s}(x)$. We consider this equation in $F[x]$. By the first result each $q_{i}, g_{j}, 1 \leq i \leq r, 1 \leq j \leq s$ is irreducible in $F[x]$. Since $F[x]$ is a UFD, we get $r=s$ and by reordering, we get that $q_{i}(x)$ is an associate of $g_{i}(x)$ in $F[x]$. We can assume w.l.o.g. that $q_{i}(x)=$ (unit in $\left.F[x]\right) g_{i}(x), 1 \leq i \leq r$. Since units in $F[x]$ are non-zero constants, these are of the form $c d^{-1}$ where $c, d \in R$. Thus we get $d_{i} q_{i}(x)=c_{i} g_{i}(x)$. Using contents, we conclude that $d_{i}=c_{i}$, thus $q_{i}(x)$ is an associate of $g_{i}(x)$ in $R[x]$, so the factorization is unique.

Thus $R[x]$ is a UFD.

