UPSC Civil Services Main 2004 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) If p is a prime number of the form $4 n+1, n$ a natural number, then show that the congruence $x^{2} \equiv-1 \bmod p$ is solvable.

Solution. Consider the multiplicative group G of non-zero residue classes modulo p. In this group [1] and $[p-1]$ are the only two elements which are there own inverses as the equation $x^{2}=[1]$ has exactly two solutions in the field $\mathbb{Z} / p \mathbb{Z}$. Since order of G is $\phi(p)=p-1=4 n$, the remaining $4 n-2$ elements form $2 n-1$ pairs, in each pair each element is the inverse of the other. Thus

$$
\prod_{1<r<p-1}[r]=[1]
$$

as each one of the $2 n-1$ pairs when multiplied would give us [1]. Consequently

$$
\prod_{1 \leq r \leq p-1}[r]=[p-1] \Longrightarrow \quad(p-1)!\equiv p-1 \equiv-1 \quad \bmod p
$$

This is Wilson's theorem. Now

$$
\begin{aligned}
(p-1)! & =\left(1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2}\right)\left(\frac{p+1}{2} \cdot \ldots \cdot(p-1)\right) \\
& \left.=\left(1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2}\right)\left(p-\frac{p-1}{2}\right)\left(p-\frac{p-3}{2}\right) \ldots(p-1)\right) \\
& \equiv(-1)^{\frac{p-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right)^{2} \bmod p
\end{aligned}
$$

Since $p \equiv 1 \bmod 4,(-1)^{\frac{p-1}{2}}=1$ and we get

$$
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv(p-1)!\equiv-1 \quad \bmod p
$$

showing that the congruence $x^{2} \equiv-1 \bmod p$ is solvable.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(b) Let G be a group and let $a, b \in G$. If $a b=b a$ and $(O(a), O(b))=1$ then show that $O(a b)=O(a) O(b)$.

Solution. Let $O(a)=l, O(b)=m$ and $O(a b)=k$. Now $(a b)^{l m}=a^{l m} b^{l m}$ because $a b=b a$. But $a^{l m}=\left(a^{l}\right)^{m}=e, b^{l m}=\left(b^{m}\right)^{l}=e$ therefore $(a b)^{l m}=e$ and consequently k divides $l m$. Also $e=(a b)^{k}=a^{k} b^{k} \Rightarrow a^{k}=b^{-k} \Rightarrow a^{k m}=b^{-k m}=e \Rightarrow l \mid k m$, but $(l, m)=1$, therefore $l \mid k$. Considering $e=a^{k l}=b^{-k l}$, we get $m \mid k$. Since $(l, m)=1$, we get $l m \mid k$. Hence $k=l m$ completing the proof.

Question 2(a) Verify that the set E of the four roots of $x^{4}-1=0$ forms a multiplicative group. Also prove that a transformation $T, T(n)=i^{n}$ is a homomorphism from I_{+}(group of all integers with addition) onto E under multiplication.

Solution. Clearly $E=\left\{e^{\frac{2 \pi i}{4}}, e^{\frac{4 \pi i}{4}}, e^{\frac{6 \pi i}{4}}, e^{\frac{8 \pi i}{4}}\right\}=\left\{e^{\frac{\pi i}{2}}, e^{\pi i}, e^{\frac{3 \pi i}{2}}, e^{2 \pi i}\right\}=\{1,-1, i,-i\}$. The following multiplication table shows that E is a multiplication group.

	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
i	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

In fact

1. $\alpha, \beta \in E \Rightarrow \alpha \beta \in E$
2. 1 is the multiplicative identity of E.
3. Each element of E has an inverse in E.
4. The operation of multiplication is associative in E as it is so in $\mathbb{C}-\{0\}$.

Now $T(n)=i^{n}=i,-1,-i, 1$ according as $n=1,2,3,0 \bmod 4$. Thus T is a mapping from I_{+}to E and it is clearly onto (note that $T(0)=1, T(1)=i, T(2)=-1, T(3)=-i$). Moreover T is a homomorphism is obvious as $T(m+n)=i^{m+n}=i^{m} i^{n}=T(m) T(n)$.

Question 2(b) Prove that if the cancellation law holds for a ring R then $a(\neq 0) \in R$ is not a zero divisor and conversely.

Solution. Assume the cancellation law holds. If $a \neq 0$ and $a b=0$ for some $b \in R$, then we get $a b=a 0$ and since $a \neq 0$, the cancellation law gives us $b=0$, showing that a is not a zero divisor. Conversely assume R has no zero divisors. Let $a \neq 0$ and $a x=a y \Rightarrow a(x-y)=0$. This should imply $x-y=0$ because otherwise a will be a zero divisor. Thus $a x=a y, a \neq$ $0 \Longrightarrow x=y$ i.e. cancellation law holds. This completes the proof.

Question 2(c) Show that the residue class ring $\mathbb{Z} /(m)$ is a field if m is a prime number.
Solution. We first show that $\mathbb{Z} /(m)$ is a commutative ring for all $m \geq 1$.

1. Let $[a]=\{x \mid x \in \mathbb{Z}, x \equiv a \bmod m\},[b] \in \mathbb{Z} /(m)$, then $[a]+[b]=[a+b]$ as $x \equiv a$ $\bmod m, y \equiv b \bmod m \Rightarrow x+y \equiv a+b \bmod m$.
2. $[a]+[b]=[a+b]=[b+a]=[b]+[a]$ for every $[a],[b] \in \mathbb{Z} /(m)$.
3. $[a]+[0]=[a+0]=[a]$ for every $[a] \in \mathbb{Z} /(m)$.
4. If $[a] \in \mathbb{Z} /(m)$ then $[-a] \in \mathbb{Z} /(m)$ and $[a]+[-a]=[a+(-a)]=[0]$, hence $[-a]$ is the additive inverse of $[a]$.
5. $[a]+([b]+[c])=[a]+[b+c]=[a+b+c]=[a+b]+[c]=([a]+[b])+[c]$ showing the operation is additive.
6. For $[a],[b] \in \mathbb{Z} /(m),[a][b]=[a b]=[b][a]$ as $x \equiv a \bmod m, y \equiv b \bmod m \Rightarrow x y \equiv a b$ $\bmod m$. This shows that $\mathbb{Z} /(m)$ is closed with respect to the operation of multiplication of residue classes modulo m. Moreover this operation is commutative.
7. Clearly $[a]([b][c])=[a][b c]=[a b c]=([a][b])[c]$, so multiplication is associative.
8. $[a]([b]+[c])=[a][b+c]=[a(b+c)]=[a b+a c]=[a][b]+[a][c]$ and $([a]+[b])[c]=$ $[a][c]+[b][c]$.
9. $[a][1]=[1][a]=[a]$.

Thus $\mathbb{Z} /(m)$ is a commutative ring with identity. To show that it is a field, we have to show that every non-zero element is invertible.

Let $[a] \in \mathbb{Z} /(m),[a] \neq[0]$. This means that $a \not \equiv 0 \bmod m$. Since m is a prime, it follow that $(a, m)=1$, and therefore there exist integers b and c such that $a b+c m=1$. Consequently $a b \equiv 1 \bmod m$, or $[a][b]=[1]$ i.e. $[a]$ is invertible and $[b]$ is its inverse.

Hence $\mathbb{Z} /(m)$ is a field when m is a prime.
Note: $\mathbb{Z} /(m)$ is not even an integral domain when $m>1$ and is not prime. $m=b c$ where $1<b<m, 1<c<m$ and therefore $[b],[c] \neq[0]$ but $[b][c]=[b c]=[0]$, showing that $\mathbb{Z} /(m)$ has zero divisors and is not an integral domain.

Question 2(d) Define an irreducible element and a prime element in an integral domain D with unit. Prove that every prime element in D is irreducible, but the converse of this is not in general true,

Solution. Irreducible element. An element $a \neq 0$ which is not a unit in D is said to be an irreducible element if $a=b c$ implies that either b or c is a unit (consequently either b or c is an associate of a).

Prime. An element $a \neq 0, a$ not a unit is is said to be a prime element if $a|b c \Rightarrow a| b$ or $a \mid c$.

Every prime is irreducible. Let a be a prime element in D. If possible let $a=b c$, we shall show that either b or c is a unit. Since $a \mid b c$ and a is a prime element, $a \mid b$ or $a \mid c$. If $a \mid b$ then there exists $x \in D$ such that $b=x a \Longrightarrow a=x a c$. But D is an integral domain and therefore cancellation holds. Thus $a=x a c \Rightarrow 1=x c$ i.e. c is a unit. Similarly we can show that if $a \mid c$ then b is a unit. Thus a is an irreducible element i.e. it has no proper divisors.

Example where an irreducible need not be prime.

$$
D=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}
$$

We define for $\alpha \in D, N(\alpha)=a^{2}+5 b^{2}$ where $\alpha=a+b \sqrt{-5}$. Clearly for $\alpha, \beta \in D$, $N(\alpha \beta)=N(\alpha) N(\beta)$. Moreover $\alpha \in D$ is a unit if and only if $N(\alpha)=1$. Thus D has only two units namely ± 1.

Now we show that 2 is irreducible but not a prime. If possible, let $2=\alpha \beta$, then $N(2)=4=N(\alpha) N(\beta)$, showing that $N(\alpha)=1,2,4 \Rightarrow N(\beta)=4,2,1$. If $N(\alpha)=1$, then α is a unit, and if $N(\alpha)=4$, then β is a unit. If $\alpha=a+b \sqrt{-5}$, then $N(\alpha)=2 \Rightarrow a+5 b^{2}=2$, which is not possible for $a, b \in \mathbb{Z}$. Hence 2 is irreducible.

However $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, i.e. $2 \mid(1+\sqrt{-5})(1-\sqrt{-5})$ but 2 does not divide either $(1+\sqrt{-5})$ or $(1-\sqrt{-5})$, because $N(2)=4, N(1 \pm \sqrt{-5})=6$ and $4 \nmid 6$. Hence 2 is irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$.

