UPSC Civil Services Main 2005 - Mathematics Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) If M and N are normal subgroups of a group G such that $M \cap N=\{e\}$, show that every element of M commutes with every element of N.

Solution. Let $x \in M, y \in N$. We consider the element $\alpha=x y x^{-1} y^{-1}$. Now $x^{-1} \in M$ and $y \in N \subseteq G$, and M is a normal subgroup of G, therefore $y x^{-1} y^{-1} \in M$, consequently $\alpha \in M$. Similarly since N is a normal subgroup of G and $y \in N, x y x^{-1} \in N$, hence $\alpha=x y x^{-1} y^{-1} \in N$. Thus $\alpha \in M \cap N$, which means that $\alpha=x y x^{-1} y^{-1}=e \Rightarrow x y=y x$ i.e. every element of M commutes with every element of N.

Question 1(b) Show that $(1+i)$ is a prime element in the ring R of Gaussian integers.
Solution. The ring of Gaussian integers is a Euclidean domain with Euclidean function $N(a+i b)=a^{2}+b^{2}$, therefore any two elements $\alpha, \beta \in R$ have a GCD (greatest common divisor). If d is the GCD of α, β, then there exist $\gamma, \delta \in R$ such that $\alpha \gamma+\beta \delta=d$. Moreover α is a unit in R if and only if $N(\alpha)=1$, because if $N(\alpha)=1$ then $\alpha \bar{\alpha}=1$, implying that α is a unit, and conversely, if α is a unit, then there exist $\beta \in R$ such that $\alpha \beta=1$, and therefore $N(\alpha \beta)=N(\alpha) N(\beta)=1 \Rightarrow N(\alpha)=N(\beta)=1$ as both are positive integers.

First of all we prove that $1+i$ is an irreducible element (note that it is not a unit as $N(1+i)=2)$. Let $1+i=\alpha \beta$. Taking norm of both sides, we get $N(\alpha \beta)=N(\alpha) N(\beta)=$ $2 \Rightarrow N(\alpha)=1$ or $N(\beta)=1$, so either α is a unit or β is a unit. Thus $1+i$ is an irreducible element.

Let $1+i$ divide $\alpha \beta$ and assume that $1+i$ does not divide α. We shall show that $1+i$ divides β. Since the only divisors of $1+i$ are $1+i$ and units, and $1+i$ does not divide α, it follows that GCD of α and $1+i$ is 1 . Thus there exists $\gamma, \delta \in R$ such that $\gamma(1+i)+\delta \alpha=1$ or $\gamma \beta(1+i)+\delta \alpha \beta=\beta$. Since $(1+i)$ divides the left hand side of this equation, it follows that $1+i$ divides β. Hence $1+i$ is a prime element in R.

Question 2(a) 1. Let H and K be two subgroups of a finite group G, such that $|H|>$ $\sqrt{|G|}$ and $|K|>\sqrt{|G|}$. Prove that $H \cap K \neq\{e\}$.
2. If $f: G \longrightarrow G^{\prime}$ is an isomorphism, prove that the order of $a \in G$ is equal to the order of $f(a)$.

Solution.

1. We prove that $|H K|=\frac{|H||K|}{|H \cap K|}$.

If $H \cap K=\{e\}$, then $h k=h_{1} k_{1} \Leftrightarrow h_{1}^{-1} h=k_{1} k^{-1} \Leftrightarrow h_{1}^{-1} h, k_{1} k^{-1} \in H \cap K \Leftrightarrow h_{1}^{-1} h=$ $k_{1} k^{-1}=e \Leftrightarrow h=h_{1}, k=k_{1}$. Thus there are no repetitions in $H K=\{h k \mid h \in$ $H, k \in K\}$, so $|H K|=|H||K|=\frac{|H||K|}{|H \cap K|}$. (This is sufficient to prove the result, but for completeness we show the result when $H \cap K \neq\{e\}$.)
If $H \cap K \neq\{e\}$, then $h k=h_{1} k_{1} \Leftrightarrow h_{1}^{-1} h, k_{1} k^{-1} \in H \cap K \Leftrightarrow h_{1}^{-1} h=k_{1} k^{-1}=u \in$ $H \cap K \Leftrightarrow h=h_{1} u, k=u^{-1} k_{1}$ with $u \in H \cap K$. Thus $h k$ is duplicated at least $|H \cap K|$ times as $h k=(h u)\left(u^{-1} k\right)$ with $u \in H \cap K$. It is duplicated no more than $|H \cap K|$ times, because $h k=h_{1} k_{1} \Rightarrow h=h_{1} u, k=u^{-1} k_{1}$ with $u \in H \cap K$. Hence $|H K|=\frac{|H||K|}{|H \cap K|}$.
Now $|G| \geq|H K|=\frac{|H||K|}{|H \cap K|} \geq \frac{\sqrt{|G|} \sqrt{|G|}}{|H \cap K|}$ Thus $|H \cap K|>1$, so $|H \cap K| \neq\{e\}$.
2. Let $o(a)=$ order of $a=m$ and order of $f(a)=o(f(a))=n$. Then $e^{\prime}=f\left(a^{m}\right)=f(a)^{m}$, where e^{\prime} is the identity of G^{\prime}, showing that n divides m. Conversely, $f(e)=e^{\prime}=$ $f(a)^{n}=f\left(a^{n}\right) \Rightarrow a^{n}=e$ as f is one-one. This means that m divides n. Thus $m=n$, which was to be proved.

Question 2(b) Prove that any polynomial ring $F[x]$ over a field F is a UFD.
Solution. We know that $F[x]$ is a Euclidean domain with the Euclidean function being the degree of the polynomial - the algorithm being: given $f(x), g(x) \neq 0$ belonging to $F[x]$, there exist $q(x), r(x) \in F[x]$ such that $f(x)=q(x) g(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

Step 1. If $f(x), g(x) \in F[x]$, both not 0 , then they have a GCD $d(x)$, and there exist $\lambda(x), \mu(x) \in F[x]$ such that $d(x)=f(x) \lambda(x)+g(x) \mu(x)$. Let $S=\{f(x) a(x)+g(x) b(x) \mid$ $a(x), b(x) \in F[x]\}$. Then $S \neq \emptyset$, as $f(x), g(x) \in S$. Let $d(x)$ be a non-zero polynomial is S with minimal degree, i.e. $\operatorname{deg} d(x) \leq \operatorname{deg} h(x)$ for every nonzero $h(x) \in S$. Clearly if any $d^{\prime}(x)$ divides $f(x)$ and $g(x)$, then $d^{\prime}(x)$ divides $d(x)$ because $d(x)$ is of the form $f(x) a(x)+g(x) b(x)$. Moreover $d(x)$ divides both $f(x)$ and $g(x)$, otherwise we have $q(x), r(x) \in F[x]$ such that $f(x)=d(x) q(x)+r(x)$ where $\operatorname{deg} r(x)<\operatorname{deg} d(x)$, but this is not possible as $r(x) \in S$ as it is of the form $f(x) a(x)+g(x) b(x)$ so $\operatorname{deg} r(x) \geq \operatorname{deg} d(x)$. So $d(x)$ divides $f(x)$, and similarly $d(x)$ divides $g(x)$.

Step 2. An irreducible element of $F[x]$ is a prime element i.e. if $f(x)$ is irreducible and $f(x) \mid g(x) h(x)$ and $f(x) \nmid g(x)$ then $f(x) \mid h(x)$.

If $f(x) \nmid g(x)$, then $f(x)$ is irreducible implies its only divisors are units or associates of $f(x)$. Therefore the GCD of $f(x)$ and $g(x)$ is 1 . By Step 1, we have $1=f(x) a(x)+g(x) b(x)$ for some $a(x), b(x) \in F[x]$. Thus $h(x)=h(x) f(x) a(x)+h(x) g(x) b(x)$. Clearly $f(x)$ divides the right hand side, so $f(x) \mid h(x)$, as required.

Step 3. Every non-zero non-unit element in $F[x]$ can be written as the product of irreducible elements in $F[x]$.

The proof is by induction on the degree of $f(x)$. If $\operatorname{deg} f(x)=0$, then $f(x)$ is a non-zero constant, therefore a unit in $F[x]$, so we have nothing to prove.

Let the result be true for all polynomials whose degree is $<\operatorname{deg} f(x)$. If $f(x)$ is irreducible, we have nothing to prove. If $f(x)$ is not irreducible, then there exist $g(x), h(x)$, $1 \leq \operatorname{deg} g(x), \operatorname{deg} h(x)<\operatorname{deg} f(x)$ such that $g(x) h(x)=f(x)$. Now by induction both $g(x)$ and $h(x)$ are products of irreducible elements, therefore $f(x)$ is the product of irreducible elements.

Step 4: Uniqueness. If possible let

$$
f(x)=c f_{1}(x) \ldots f_{r}(x)=d g_{1}(x) \ldots g_{s}(x)
$$

where $f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}$ are irreducible, and $c, d \in F$. We will show that $r=s$ and that the g_{i} 's can be reordered such that each f_{i} is the associate of g_{i}.

Now $f_{1}(x)$ divides $g_{1}(x) \ldots g_{s}(x)$, therefore by step 2 , $f_{1}(x)$ must divide one of $g_{1}(x), \ldots, g_{s}(x)$. Let us assume without loss of generality that $f_{1}(x) \mid g_{1}(x)$, but $g_{1}(x)$ is also irreducible and $f_{1}(x)$ is not a unit, therefore $f_{1}(x)$ and $g_{1}(x)$ are associates. Thus we get

$$
c^{\prime} f_{2}(x) \ldots f_{r}(x)=d^{\prime} g_{2}(x) \ldots g_{s}(x)
$$

If $r<s$, then after r steps we shall get $g_{r+1}(x) \ldots g_{s}(x)=1$, which is not possible, hence $r \geq s$, similarly $s \geq r$ so $r=s$. Now by relabelling g_{1}, \ldots, g_{r} we get each $f_{i}(x)$ is an associate of $g_{i}(x), 1 \leq i \leq r$. Hence $F[x]$ is a UFD.

