UPSC Civil Services Main 2006 - Mathematics Algebra

Brij Bhooshan

Asst. Professor
B.S.A. College of Engg \& Technology

Mathura

Question 1(a) Let S be the set of all real numbers except -1. Define * on S by

$$
a * b=a+b+a b
$$

Is $(S, *)$ a group? Find the solution of the equation

$$
2 * x * 3=7
$$

in S.
Solution. Clearly $S \neq \emptyset$.

1. S is closed for the operation (*). If $a+b+a b=-1$, then $a+b+a b+1=(a+1)(b+1)=$ $0 \Rightarrow a=-1$ or $b=-1$. Thus $a, b \in S \Rightarrow a \neq-1, b \neq-1 \Rightarrow a+b+a b \neq-1 \Rightarrow a * b \in S$.
2. $a * 0=0 * a=a+0+a .0=a$, showing that 0 is the identity for S.
3. $a \neq-1$, then $b=-\frac{a}{1+a} \neq-1$ and $a * b=b * a=a-\frac{a}{1+a}-\frac{a^{2}}{1+a}=0$, thus S is closed with respect to inverses for the operation $(*)$.
4. $a * b=b * a$ for every $a, b \in S$.
5. $(a * b) * c=(a+b+a b) * c=a+b+a b+c+a c+b c+a b c$ and $a *(b * c)=a *(b+c+b c)=$ $a+b+c+b c+a b+a c+a b c$. Thus $(a * b) * c=a *(b * c)$ thus the operation $(*)$ is associative.

Hence $(S, *)$ is an abelian group.
$2 * x * 3=2+x+3+2 x+3 x+6+6 x$. Therefore we want $12 x+11=7$, so $x=-\frac{1}{3}$.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(b) If G is a group of real numbers under addition and \mathbb{N} is the subgroup of G consisting of the integers, prove that G / \mathbb{N} is isomorphic to the group H of all complex numbers of absolute value 1 under multiplication.

Solution. Let $f: G \longrightarrow H$ be defined by $f(\alpha)=e^{2 i \pi \alpha}$. Then f is an onto homomorphism.

1. $f(\alpha+\beta)=e^{2 i \pi(\alpha+\beta)}=e^{2 i \pi \alpha} e^{2 i \pi \beta}=f(\alpha) f(\beta)$.
2. Let z be any complex number with $|z|=1$, then $z \neq 0$. Let $\theta=\arg z$, then

$$
f\left(\frac{\theta}{2 \pi}\right)=e^{i \theta}=z
$$

Moreover kernel $f=\mathbb{N}$, because $\alpha \in \operatorname{kernel} f$ if and only if $e^{2 i \pi \alpha}=1 \Leftrightarrow \alpha \in \mathbb{N}$. Thus by the fundamental theorem of homomorphisms G / \mathbb{N} is isomorphic to H.

Alternative solution. Let f be as defined above. Define $\phi: G / \mathbb{N} \longrightarrow H$ by $\phi(\bar{\alpha})=$ $\phi(\alpha+\mathbb{N})=f(\alpha)$ for $\alpha \in G$. Then

1. ϕ is well defined i.e.. if $\bar{\alpha}=\bar{\beta}$ then $\phi(\bar{\alpha})=\phi(\bar{\beta})$ i.e. ϕ does not depend on the choice of representative in the coset. Clearly $\bar{\alpha}=\bar{\beta} \Leftrightarrow \alpha-\beta \in \mathbb{N} \Rightarrow e^{2 i \pi \alpha}=e^{2 i \pi \beta} \Rightarrow f(\alpha)=$ $f(\beta)$.
2. ϕ is a homomorphism. $\phi(\bar{\alpha}+\bar{\beta})=\phi(\overline{\alpha+\beta})=f(\alpha+\beta)=f(\alpha) f(\beta)=\phi(\bar{\alpha}) \phi(\bar{\beta})$.
3. ϕ is 1-1. If $\bar{\alpha} \neq \bar{\beta}$, then $\alpha-\beta \notin \mathbb{N}$ and therefore $e^{2 i \pi(\alpha-\beta)} \neq 1 \Rightarrow f(\alpha) \neq f(\beta) \Rightarrow$ $\phi(\bar{\alpha}) \neq \phi(\bar{\beta})$.
4. ϕ is onto. If z is any complex number with $|z|=1$ and $\alpha \in G$ is so determined that $f(\alpha)=z$ (as above) then $\phi(\bar{\alpha})=f(\alpha)=z$.

Thus ϕ is an isomorphism from G / \mathbb{N} onto H i.e. G / \mathbb{N} is isomorphic to H.
Question 2(a) 1. Let $O(G)=108$. Show that there exists a normal subgroup of order 27 or 9 .
2. Let G be the set of all those ordered pairs (a, b) of real numbers for which $a \neq 0$ and define in G an operation \otimes as follows:

$$
(a, b) \otimes(c, d)=(a c, b c+d)
$$

Examine whether G is a group with respect to the operation \otimes. If it is a group, is G abelian?

Solution.

1. According to one of the Sylow theorems, the number of subgroups of G of order 27 is $\equiv 1$ (modulo 3) and is a divisor of 108 and therefore of 4 , thus the number of such subgroups is 1 or 4 . If G has a unique Sylow group H of order 27 , then it has to be a normal subgroup because $O\left(a^{-1} H a\right)=27$ and therefore $a^{-1} H a=H$ for every $a \in G$. Let us therefore assume that G has more than one subgroup of order 27. Then G has four subgroups of order 27 , say $H_{1}, H_{2}, H_{3}, H_{4}$.
We first of all observer that $H_{i} \cap H_{j}$ must have at least 9 elements, because if not, then $\left|H_{i} H_{j}\right|$, the number of elements in $H_{i} H_{j}$, would be at least 243 as $\left|H_{i} H_{j}\right|=\frac{\left|H_{i}\right|\left|H_{j}\right|}{\left|H_{i} \cap H_{j}\right|}$, and this is not possible. Let $H=H_{i} \cap H_{j}, i \neq j$, then $O(H)=9$, because $H_{i} \neq H_{j}$. Now $N_{H_{i}}(H)$, the normalizer of H in H_{i}, contains H properly (see 1995 question 1(b)), showing that $N_{H_{i}}(H)=H_{i}$ and similarly $N_{H_{j}}(H)=H_{j}$. Thus $N_{G}(H) \supseteq H_{i}$ as well as H_{j} and therefore $O\left(N_{G}(H)\right) \geq 81$ and is divisor of 108. Hence $N_{G}(H)=G$ and H is a normal subgroup of G. Thus G has a normal subgroup of order 27 or of order 9 .
2. We observe that $G \neq \emptyset$ and
(a) G is closed with respect to the operation \otimes i.e. $(a, b),(c, d) \in G \Rightarrow(a, b) \otimes(c, d) \in$ G.
(b) (1, 0) is identity of G w.r.t. \otimes as $(a, b)(1,0)=(a, b)=(1,0) \otimes(a, b)$
(c) If $(a, b) \in G$, then $\left(a^{-1},-b a^{-1}\right) \in G$ as $a \neq 0$, and $(a, b) \otimes\left(a^{-1},-b a^{-1}\right)=(1,0)=$ $\left(a^{-1},-b a^{-1}\right)(a, b)$. Thus every element of G has an inverse w.r.t. the operation \otimes and it belongs to G.
(d) $(a, b) \otimes((c, d) \otimes(e, f))=(a, b) \otimes(c d, d e+f)=(a c e, b c e+d e+f)=((a, b) \otimes$ $(c, d)) \otimes(e, f)$

Thus G is a subgroup w.r.t. operation $\otimes . G$ is not an abelian group, as $(a, b) \otimes(2,0)=$ $(2 a, 2 b)$ whereas $(2,0) \otimes(a, b)=(2 a, b)$ showing that $(2,0) \otimes(a, b) \neq(a, b) \otimes(2,0)$ when $b \neq 0$.

Question 2(b) Show that $\mathbb{Z}[\sqrt{2}]=\{a+\sqrt{2} b \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain.
Solution. Definition: An integral domain $R \neq\{0\}$ is called a Euclidean domain if there exists a function $g: R-\{0\} \longrightarrow \mathbb{Z}$ (ring of integers) such that

1. $g(a) \geq 0$ for every $a \in R^{*}=R-\{0\}$.
2. For every $a, b \in R^{*}, g(a b) \geq g(a)$.
3. Euclid's Algorithm: For every $a \in R, b \in R^{*}$, there exist $q, r \in R$ such that $a=b q+r$, where $r=0$ or $g(r)<g(b)$.

For $\alpha \in \mathbb{Z}[\sqrt{2}], \alpha=a+b \sqrt{2}, a, b \in \mathbb{Z}$, we define $N(\alpha)=a^{2}-2 b^{2}$ and $g(\alpha)=|N(\alpha)|$. Clearly

1. $g(\alpha) \geq 0$ for every $\alpha \in \mathbb{Z}[\sqrt{2}], \alpha \neq 0$.
2. For $\alpha, \beta \in \mathbb{Z}[\sqrt{2}], \alpha \neq 0, \beta \neq 0, g(\alpha \beta)=g(\alpha) g(\beta) \geq g(\alpha)$ because $g(\beta) \geq 1$.

Note that if $\alpha=a+b \sqrt{2}, \beta=c+d \sqrt{2}$, then

$$
\begin{aligned}
N(\alpha) N(\beta) & =\left(a^{2}-2 b^{2}\right)\left(c^{2}-2 d^{2}\right) \\
& =a^{2} c^{2}+4 b^{2} d^{2}-2 a^{2} d^{2}-2 b^{2} c^{2} \\
& =(a c+2 b d)^{2}-2(a d+b c)^{2} \\
& =N(a c+2 b d+\sqrt{2}(a d+b c) \\
& =N(\alpha \beta)
\end{aligned}
$$

3. Let $\alpha=a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ and $\beta=c+d \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ and $\beta \neq 0$. Clearly

$$
\frac{\alpha}{\beta}=\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{(c+d \sqrt{2})(c-d \sqrt{2})}=p+q \sqrt{2}
$$

where $p=\frac{a c-2 b d}{c^{2}-2 d^{2}}, q=\frac{b c-a d}{c^{2}-2 d^{2}}$ are rational numbers. Let m, n be the integers nearest to p, q respectively i.e. $|p-m| \leq \frac{1}{2},|q-n| \leq \frac{1}{2}$. Note that if $p=[p]+\theta$, where $0 \leq \theta<1$ and $[p]$ is the integral part of p, then $m=[p]$ if $\theta \leq \frac{1}{2}$ and $m=[p]+1$ if $\theta>\frac{1}{2}$.
Let $p-m=r, q-n=s$, then $|r| \leq \frac{1}{2},|s| \leq \frac{1}{2}$. Now

$$
\begin{aligned}
\alpha & =a+b \sqrt{2}=(c+d \sqrt{2})(p+q \sqrt{2}) \\
& =(c+d \sqrt{2})((m+r)+(n+s) \sqrt{2}) \\
& =(c+d \sqrt{2})(m+n \sqrt{2})+(c+d \sqrt{2})(r+s \sqrt{2})
\end{aligned}
$$

Let $\gamma=m+n \sqrt{2}, \delta=(c+d \sqrt{2})(r+s \sqrt{2})$, then $\alpha=\beta \gamma+\delta$, where $\gamma \in \mathbb{Z}[\sqrt{2}]$ and $\delta=\alpha-\beta \gamma \in \mathbb{Z}[\sqrt{2}]$.
Now either $\delta=0$ or $g(\delta)=|N(\beta)|\left|r^{2}-2 s^{2}\right|$. But $\left|r^{2}-2 s^{2}\right| \leq \frac{1}{4}+\frac{2}{4}<1$, therefore $g(\delta)<g(\beta)$. Thus given $\alpha, \beta \in \mathbb{Z}[\sqrt{2}], \beta \neq 0$, we have found $\gamma, \delta \in \mathbb{Z}[\sqrt{2}]$ such that $\alpha=\beta \gamma+\delta$ where $\delta=0$ or $g(\delta)<g(\beta)$.

This shows that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain.

