UPSC Civil Services Main 1981 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) State and prove Cauchy's integral formula.
Solution. See 1986 question 1(a).
Question 1(b) Evaluate

1. $\int_{0}^{\infty} \frac{x^{-k}}{x+1} d x, 0<k<1$.
2. $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$

Solution.

1. We shall show that for $0<a<1$

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x=\frac{\pi}{\sin a \pi}
$$

Now let $a-1=-k$ so that $a=1-k$ and $0<a<1 \Leftrightarrow 0<k<1$. Thus for $0<k<1$,

$$
\int_{0}^{\infty} \frac{x^{-k}}{x+1} d x=\frac{\pi}{\sin (1-k) \pi}=\frac{\pi}{\sin k \pi}
$$

We consider first of all $\mathbb{C}-\{$ positive real axis $\}$ i.e. there is a cut along the real axis for which $x \geq 0$ to make $\log z$ single valued. We choose that branch of $\log z$ for which $\log z=\log x$ when $z=x, x>0$.

For $\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x$ we take $f(z)=\frac{z^{a-1}}{1+z}$ and the contour C as shown in the figure. γ_{r} is a circle of radius r oriented clockwise, and γ_{R} is a circle of radius R oriented anticlockwise. $B C$ is the line joining $(r, 0)$ to $(R, 0)$, so is $D E$. We finally make $r \rightarrow 0$ and $R \rightarrow \infty$. Note that on $B C$ $z^{a-1}=x^{a-1}$ and on $D E z^{a-1}=\left(x e^{2 \pi i}\right)^{a-1}$.

(a) Clearly $f(z)=\frac{z^{a-1}}{1+z}$ has a simple pole at $z=-1$ inside the contour. Residue at $z=-1=e^{\pi i}$ of $f(z)$ is $\left(e^{\pi i}\right)^{a-1}$. Thus

$$
\lim _{\substack{R \rightarrow \infty \\ r \rightarrow 0}} \int_{C} \frac{z^{a-1}}{1+z} d z=2 \pi i\left(-e^{\pi i a}\right)
$$

Note that $z=0$ is excluded by the cut.
(b)

$$
\left|\int_{\gamma_{R}} \frac{z^{a-1}}{1+z} d z\right|=\left|\int_{0}^{2 \pi} \frac{R^{a-1} e^{i \theta(a-1)}}{1+R e^{i \theta}} R i e^{i \theta} d \theta\right| \leq \frac{R^{a-1} R}{R-1} 2 \pi
$$

Here we use $|z+1| \geq|z|-1$. Thus $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{z^{a-1}}{1+z} d z=0$ as $a<1$.
(c) Similarly

$$
\left|\int_{\gamma_{r}} \frac{z^{a-1}}{1+z} d z\right| \leq \frac{r^{a}}{1-r} 2 \pi
$$

because $|z+1| \geq 1-|z|$. Thus $\lim _{r \rightarrow 0} \int_{\gamma_{r}} \frac{z^{a-1}}{1+z} d z=0$.
Thus

$$
\begin{aligned}
\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0}} \int_{C} \frac{z^{a-1}}{1+z} d z & =\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0}} \int_{B C} \frac{x^{a-1}}{1+x} d x+\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0}} \int_{D E} \frac{x^{a-1} e^{2 \pi i(a-1)}}{1+x} d x \\
& =\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x+\int_{\infty}^{0} \frac{x^{a-1}}{1+x} e^{2 \pi i a} d x
\end{aligned}
$$

as on $B C, z=x$ and on $D E, z=x e^{2 \pi i}$. Thus

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x}\left(1-e^{2 \pi i a}\right) d x=-2 \pi i e^{\pi i a}
$$

or

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x=-2 \pi i \frac{e^{\pi i a}}{1-e^{2 \pi i a}}=\pi \frac{-2 i}{e^{-\pi i a}-e^{\pi i a}}=\frac{\pi}{\sin a \pi}
$$

For more information log on www.brijrbedu.org.

Alternate proof: This avoids the use of multiple valued functions. In 1991, question 2(c), we proved

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin a \pi} \text { for } 0<a<1
$$

Put $e^{x}=t$, then

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\int_{0}^{\infty} \frac{t^{a}}{1+t} \frac{d t}{t}=\int_{0}^{\infty} \frac{t^{a-1}}{1+t} d t
$$

Thus $\int_{0}^{\infty} \frac{t^{a-1}}{1+t} d t=\frac{\pi}{\sin a \pi}, 0<a<1$.
2. Clearly $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ and $\frac{\sin ^{2} x}{x^{2}}$ is the real part of $\frac{1-e^{2 i x}}{2 x^{2}}$, therefore we take $f(z)=\frac{1-e^{2 i z}}{2 z^{2}}$ and the contour C as shown. Finally we let $R \rightarrow \infty, r \rightarrow 0$.

(a) On $\gamma_{R}, z=R e^{i \theta}$ and

$$
\left|1-e^{2 i z}\right|=\left|1-e^{2 i(R \cos \theta+i R \sin \theta)}\right| \leq 1+\left|e^{2 i(R \cos \theta+i R \sin \theta)}\right| \leq 2
$$

because $\left|e^{2 i R \cos \theta}\right|=1$ and $\left|e^{-2 R \sin \theta}\right| \leq 1$ as $\sin \theta>0$ for $0<\theta<\pi$. Therefore

$$
\left|\int_{\gamma_{R}} \frac{1-e^{2 i z}}{2 z^{2}} d z\right| \leq \frac{2}{2 R^{2}} \pi R=\frac{\pi}{R}
$$

and hence $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{1-e^{2 i z}}{2 z^{2}} d z=0$.
(b) Residue of $f(z)$ at $z=0$: Note that $z=0$ is a simple pole, so the residue is

$$
\begin{aligned}
\lim _{z \rightarrow 0} z \frac{1-e^{2 i z}}{2 z^{2}}=\lim _{z \rightarrow 0} & \frac{1-e^{2 i z}}{2 z}=\lim _{z \rightarrow 0} \frac{-2 i e^{2 i z}}{2}=-i . \text { Thus } \\
& \lim _{r \rightarrow 0} \int_{\gamma_{r}} \frac{1-e^{2 i z}}{2 z^{2}} d z=i(-i)(0-\pi)=-\pi
\end{aligned}
$$

Here we have used the following property: If $f(z)$ has a simple pole at $z=a$ and γ_{r} is a circular arc (part of a circle with center a and radius r), from θ_{1} to θ_{2}, then

$$
\lim _{r \rightarrow 0} \int_{\gamma_{r}} f(z) d z=i a_{-1}\left(\theta_{2}-\theta_{1}\right)
$$

where a_{-1} is the residue of $f(z)$ at $z=a$. See 1985, question 1 (c) for more details and proof.

For more information log on www.brijrbedu.org.

Thus

$$
\lim _{\substack{R \rightarrow \infty \\ r \rightarrow 0}} \int_{C} \frac{1-e^{2 \pi i z}}{2 z^{2}} d z=\int_{-\infty}^{\infty} \frac{1-e^{2 \pi i x}}{2 x^{2}} d x-\pi=0
$$

as there is no singularity inside C. Taking real parts, we get

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi \Longrightarrow \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

Question 1(c) Obtain the Laurent expansion in powers of z of

$$
z+\frac{1}{z-1}+\frac{\sinh z}{z^{2}}
$$

Solution.

1. $\frac{1}{z-1}$ is analytic in the annular region $0 \leq|z|<1$, so we have the Taylor series for $\frac{1}{z-1}$ valid in $0 \leq|z|<1$. In fact for $|z|<1$,

$$
\frac{1}{z-1}=-(1-z)^{-1}=-\sum_{n=0}^{\infty} z^{n}
$$

2. $\frac{\sinh z}{z^{2}}$ has a simple pole at $z=0$ and is analytic everywhere else. We have Laurent series valid in $|z|>0$:

$$
\frac{\sinh z}{z^{2}}=\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}
$$

Note that $\sinh z=\frac{e^{z}+e^{-z}}{2}$, which gives us the desired expansion.
Thus

$$
z+\frac{1}{z-1}+\frac{\sinh z}{z^{2}}=z-\sum_{n=0}^{\infty} z^{n}+\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}
$$

or

$$
z+\frac{1}{z-1}+\frac{\sinh z}{z^{2}}=\frac{1}{z}-1+\frac{z}{3!}+\sum_{n=1}^{\infty} z^{2 n+1}\left(\frac{1}{(2 n+3)!}-1\right)-\sum_{n=1}^{\infty} z^{2 n}
$$

and this expansion is valid in $0<|z|<1$.

