
UPSC Civil Services Main 1981 - Mathematics
Complex Analysis

Question 1(a) State and prove Cauchy’s integral formula.

Solution. See 1986 question 1(a).

Question 1(b) Evaluate

1.

∫ ∞
0

x−k

x+ 1
dx, 0 < k < 1.

2.

∫ ∞
0

sin2 x

x2
dx

Solution.

1. We shall show that for 0 < a < 1∫ ∞
0

xa−1

1 + x
dx =

π

sin aπ

Now let a−1 = −k so that a = 1−k and 0 < a < 1⇔ 0 < k < 1. Thus for 0 < k < 1,∫ ∞
0

x−k

x+ 1
dx =

π

sin(1− k)π
=

π

sin kπ

We consider first of all C − {positive real axis} i.e. there is a cut along the real axis
for which x ≥ 0 to make log z single valued. We choose that branch of log z for which
log z = log x when z = x, x > 0.
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For
∫∞

0
xa−1

1+x
dx we take f(z) = za−1

1+z
and

the contour C as shown in the figure. γr
is a circle of radius r oriented clockwise,
and γR is a circle of radius R oriented an-
ticlockwise. BC is the line joining (r, 0)
to (R, 0), so is DE. We finally make
r → 0 and R → ∞. Note that on BC
za−1 = xa−1 and on DE za−1 = (xe2πi)a−1.

O
E D

B C

γr

γR

(a) Clearly f(z) =
za−1

1 + z
has a simple pole at z = −1 inside the contour. Residue at

z = −1 = eπi of f(z) is (eπi)a−1. Thus

lim
R→∞
r→0

∫
C

za−1

1 + z
dz = 2πi(−eπia)

Note that z = 0 is excluded by the cut.

(b) ∣∣∣∣∫
γR

za−1

1 + z
dz

∣∣∣∣ =

∣∣∣∣∫ 2π

0

Ra−1eiθ(a−1)

1 +Reiθ
Rieiθ dθ

∣∣∣∣ ≤ Ra−1R

R− 1
2π

Here we use |z + 1| ≥ |z| − 1. Thus lim
R→∞

∫
γR

za−1

1 + z
dz = 0 as a < 1.

(c) Similarly ∣∣∣∣∫
γr

za−1

1 + z
dz

∣∣∣∣ ≤ ra

1− r
2π

because |z + 1| ≥ 1− |z|. Thus lim
r→0

∫
γr

za−1

1 + z
dz = 0.

Thus

lim
R→∞
r→0

∫
C

za−1

1 + z
dz = lim

R→∞
r→0

∫
BC

xa−1

1 + x
dx+ lim

R→∞
r→0

∫
DE

xa−1e2πi(a−1)

1 + x
dx

=

∫ ∞
0

xa−1

1 + x
dx+

∫ 0

∞

xa−1

1 + x
e2πia dx

as on BC, z = x and on DE, z = xe2πi. Thus∫ ∞
0

xa−1

1 + x
(1− e2πia) dx = −2πieπia

or ∫ ∞
0

xa−1

1 + x
dx = −2πi

eπia

1− e2πia
= π

−2i

e−πia − eπia
=

π

sin aπ
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Alternate proof: This avoids the use of multiple valued functions. In 1991, question
2(c), we proved ∫ ∞

−∞

eax

1 + ex
dx =

π

sin aπ
for 0 < a < 1

Put ex = t, then ∫ ∞
−∞

eax

1 + ex
dx =

∫ ∞
0

ta

1 + t

dt

t
=

∫ ∞
0

ta−1

1 + t
dt

Thus

∫ ∞
0

ta−1

1 + t
dt =

π

sin aπ
, 0 < a < 1.

2. Clearly

∫ ∞
0

sin2 x

x2
dx =

1

2

∫ ∞
−∞

sin2 x

x2
dx

and
sin2 x

x2
is the real part of

1− e2ix

2x2
,

therefore we take f(z) =
1− e2iz

2z2
and

the contour C as shown. Finally we let
R→∞, r → 0.

γR

γr

D(R, 0)A(−R, 0) B(−r, 0) C(r, 0)

(a) On γR, z = Reiθ and

|1− e2iz| = |1− e2i(R cos θ+iR sin θ)| ≤ 1 + |e2i(R cos θ+iR sin θ)| ≤ 2

because |e2iR cos θ| = 1 and |e−2R sin θ| ≤ 1 as sin θ > 0 for 0 < θ < π. Therefore∣∣∣∣∫
γR

1− e2iz

2z2
dz

∣∣∣∣ ≤ 2

2R2
πR =

π

R

and hence lim
R→∞

∫
γR

1− e2iz

2z2
dz = 0.

(b) Residue of f(z) at z = 0: Note that z = 0 is a simple pole, so the residue is

lim
z→0

z
1− e2iz

2z2
= lim

z→0

1− e2iz

2z
= lim

z→0

−2ie2iz

2
= −i. Thus

lim
r→0

∫
γr

1− e2iz

2z2
dz = i(−i)(0− π) = −π

Here we have used the following property: If f(z) has a simple pole at z = a and
γr is a circular arc (part of a circle with center a and radius r), from θ1 to θ2, then

lim
r→0

∫
γr

f(z) dz = ia−1(θ2 − θ1)

where a−1 is the residue of f(z) at z = a. See 1985, question 1(c) for more details
and proof.
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Thus

lim
R→∞
r→0

∫
C

1− e2πiz

2z2
dz =

∫ ∞
−∞

1− e2πix

2x2
dx− π = 0

as there is no singularity inside C. Taking real parts, we get∫ ∞
−∞

sin2 x

x2
dx = π =⇒

∫ ∞
0

sin2 x

x2
dx =

π

2

Question 1(c) Obtain the Laurent expansion in powers of z of

z +
1

z − 1
+

sinh z

z2

Solution.

1. 1
z−1

is analytic in the annular region 0 ≤ |z| < 1, so we have the Taylor series for 1
z−1

valid in 0 ≤ |z| < 1. In fact for |z| < 1,

1

z − 1
= −(1− z)−1 = −

∞∑
n=0

zn

2. sinh z
z2

has a simple pole at z = 0 and is analytic everywhere else. We have Laurent
series valid in |z| > 0:

sinh z

z2
=

1

z2

∞∑
n=0

z2n+1

(2n+ 1)!

Note that sinh z =
ez + e−z

2
, which gives us the desired expansion.

Thus

z +
1

z − 1
+

sinh z

z2
= z −

∞∑
n=0

zn +
1

z2

∞∑
n=0

z2n+1

(2n+ 1)!

or

z +
1

z − 1
+

sinh z

z2
=

1

z
− 1 +

z

3!
+
∞∑
n=1

z2n+1

(
1

(2n+ 3)!
− 1

)
−
∞∑
n=1

z2n

and this expansion is valid in 0 < |z| < 1.
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