UPSC Civil Services Main 1984 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Evaluate by contour integration method $\int_{0}^{\infty} \frac{x \sin m x}{x^{4}+a^{4}} d x$.
Solution. See 1998 question 2(b).
Question 1(b) Evaluate by contour integration method $\int_{0}^{\infty} \frac{x^{a-1} \log x}{1+x^{2}} d x, 0<a<2$.

Solution.

We take $f(z)=\frac{z e^{a z}}{1+e^{2 z}}$ and the con-

1. On $B C, z=R+i y$ and therefore

$$
\left|\int_{B C} f(z) d z\right|=\left|\int_{0}^{\pi} \frac{(R+i y) e^{a R+i a y}}{1+e^{2(R+i y)}} i d y\right| \leq \int_{0}^{\pi} \frac{(R+y) e^{a R}}{e^{2 R}-1} d y \leq \frac{\pi(R+\pi) e^{a R}}{e^{2 R}-1}
$$

because $\left|1+e^{2 R}\right| \geq e^{2 R}-1$ and $R+y \leq R+\pi$ on $0 \leq y \leq \pi$.
Since $\lim _{R \rightarrow \infty} \frac{(R+\pi) e^{a R}}{e^{2 R}-1}=\lim _{R \rightarrow \infty} \frac{(R+\pi) a e^{a R}+e^{a R}}{2 e^{2 R}}=\lim _{R \rightarrow \infty} \frac{(R+\pi) a+1}{2 e^{2 R-a R}}=0$ if $2-a>0$
i.e. $a<2$, it follows that $\lim _{R \rightarrow \infty} \int_{B C} f(z) d z=0$.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.
2.

$$
\left|\int_{D A} f(z) d z\right|=\left|\int_{0}^{\pi} \frac{(-R+i y) e^{-a R+i a y}}{1+e^{2(-R+i y)}} i d y\right| \leq \int_{0}^{\pi} \frac{(-R+y) e^{-a R}}{1-e^{-2 R}} d y \leq \frac{\pi(R+\pi) e^{-a R}}{1-e^{-2 R}}
$$

$$
\text { But } \lim _{R \rightarrow \infty} R e^{-a R}=0\left(\text { note that } e^{-a R} \leq \frac{1}{a^{2} R^{2}} \text {), therefore } \lim _{R \rightarrow \infty} \int_{D A} f(z) d z=0\right.
$$

3. $\lim _{R \rightarrow \infty} \int_{A B} f(z) d z=\int_{-\infty}^{\infty} \frac{x e^{a x}}{1+e^{2 x}} d x$.
4. $\lim _{R \rightarrow \infty} \int_{C D} f(z) d z=\int_{\infty}^{-\infty} \frac{(x+i \pi) e^{a(x+i \pi)}}{1+e^{2 x+2 i \pi}} d x$ as $z=x+i \pi$.

Thus

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{C} f(z) d z & =\int_{-\infty}^{\infty} \frac{x e^{a x}}{1+e^{2 x}} d x-\int_{-\infty}^{\infty} \frac{(x+i \pi) e^{a(x+i \pi)}}{1+e^{2 x}} d x \\
& =\int_{-\infty}^{\infty} \frac{x e^{a x}\left(1-e^{i \pi a}\right)}{1+e^{2 x}} d x-i \pi \int_{-\infty}^{\infty} \frac{e^{a x} e^{i \pi a}}{1+e^{2 x}} d x
\end{aligned}
$$

The poles of $f(z)$ are given by $e^{2 z}=e^{(2 n+1) \pi i}$. The only pole in the strip $0 \leq y \leq \pi$ is $z=\frac{\pi i}{2}$ and it is a simple pole.

Residue at $z=\frac{\pi i}{2}$ is $\lim _{z \rightarrow \frac{\pi i}{2}} \frac{z e^{a z}\left(z-\frac{\pi i}{2}\right)}{1+e^{2 z}}=\frac{\frac{\pi i}{2} e^{\frac{\pi i a}{2}}}{2 e^{\pi i}}=-\frac{\pi i}{4} e^{\frac{\pi i a}{2}}$. Thus

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x e^{a x}\left(1-e^{i \pi a}\right)}{1+e^{2 x}} d x-i \pi \int_{-\infty}^{\infty} \frac{e^{a x} e^{i \pi a}}{1+e^{2 x}} d x=2 \pi i\left(-\frac{\pi i}{4} e^{\frac{\pi i a}{2}}\right) \tag{1}
\end{equation*}
$$

Equating the real part of both sides, we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x e^{a x}(1-\cos \pi a)}{1+e^{2 x}} d x+\pi \sin a \pi \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{2 x}} d x=\frac{\pi^{2}}{2} \cos \frac{\pi a}{2} \\
\Rightarrow & 2 \sin ^{2} \frac{\pi a}{2} \int_{-\infty}^{\infty} \frac{x e^{a x}}{1+e^{2 x}} d x+\pi \sin \pi a \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{2 x}} d x=\frac{\pi^{2}}{2} \cos \frac{\pi a}{2}
\end{aligned}
$$

Putting $e^{x}=t$ so that $x=\log t, d x=d t / t$, we get

$$
\begin{equation*}
2 \sin ^{2} \frac{\pi a}{2} \int_{0}^{\infty} \frac{t^{a-1} \log t}{1+t^{2}} d t+\pi \sin \pi a \int_{0}^{\infty} \frac{t^{a-1}}{1+t^{2}} d t=\frac{\pi^{2}}{2} \cos \frac{\pi a}{2} \tag{2}
\end{equation*}
$$

Equating the imaginary parts in (1), we get

$$
-\sin \pi a \int_{-\infty}^{\infty} \frac{x e^{a x}}{1+e^{2 x}} d x-\pi \cos \pi a \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{2 x}} d x=\frac{\pi^{2}}{2} \sin \frac{\pi a}{2}
$$

Put $e^{x}=t$ as before, to get

$$
\begin{equation*}
-\sin \pi a \int_{0}^{\infty} \frac{t^{a-1} \log t}{1+t^{2}} d t-\pi \cos \pi a \int_{0}^{\infty} \frac{t^{a-1}}{1+t^{2}} d t=\frac{\pi^{2}}{2} \sin \frac{\pi a}{2} \tag{3}
\end{equation*}
$$

Multiplying (2) by $\cos \pi a$ and (3) by $\sin \pi a$ and adding we get

$$
\begin{aligned}
\left(2 \sin ^{2} \frac{\pi a}{2} \cos \pi a-\sin ^{2} \pi a\right) \int_{0}^{\infty} \frac{t^{a-1} \log t}{1+t^{2}} d t & =\frac{\pi^{2}}{2}\left[\cos \pi a \cos \frac{\pi a}{2}+\sin \pi a \sin \frac{\pi a}{2}\right] \\
& =\frac{\pi^{2}}{2} \cos \left(\pi a-\frac{\pi a}{2}\right)=\frac{\pi^{2}}{2} \cos \frac{\pi a}{2} \\
\text { Now } 2 \sin ^{2} \frac{\pi a}{2} \cos \pi a-\sin ^{2} \pi a & =2 \sin ^{2} \frac{\pi a}{2}\left[\cos \pi a-2 \cos ^{2} \frac{\pi a}{2}\right] \\
& =2 \sin ^{2} \frac{\pi a}{2}\left[2 \cos ^{2} \frac{\pi a}{2}-1-2 \cos ^{2} \frac{\pi a}{2}\right] \\
& =-2 \sin ^{2} \frac{\pi a}{2} \\
\Rightarrow \int_{0}^{\infty} \frac{t^{a-1} \log t}{1+t^{2}} d t & =-\frac{\pi^{2}}{2} \cos \frac{\pi a}{2} / 2 \sin ^{2} \frac{\pi a}{2} \\
& =-\frac{\pi^{2}}{4} \cot \frac{\pi a}{2} \csc \frac{\pi a}{2}
\end{aligned}
$$

as required.
Question 1(c) Distinguish clearly between a pole and an essential singularity. If $z=a$ is an essential singularity of a function $f(z)$, prove that for any positive numbers η, ρ, ϵ there exists a point z such that $0<|z-a|<\rho$ for which $|f(z)-\eta|<\epsilon$.

Solution. If $f(z)$ has an isolated singularity at z_{0}, which is not a removable singularity, then $f(z)$ has a pole at $z=z_{0}$ if $\lim _{z \rightarrow z_{0}} f(z)=\infty$. In this case if $f(z)$ has a pole of order k at $z=z_{0}$, then

$$
f(z)=a_{-k}\left(z-z_{0}\right)^{-k}+\ldots+a_{-1}\left(z-z_{0}\right)^{-1}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and this Laurent expansion is valid in some deleted neighborhood $0<\left|z-z_{0}\right|<\delta$ of z_{0}.
If $\lim _{z \rightarrow z_{0}} f(z)$ does not exist, then $f(z)$ has an essential singularity at $z=z_{0}$. (Note that $\lim _{z \rightarrow z_{0}} f(z)$ is not finite as z_{0} is not a removable singularity). In this case

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and $a_{-n} \neq 0$ for infinitely many n. Again this Laurent expansion is valid in some deleted neighborhood $0<\left|z-z_{0}\right|<\delta$ of z_{0}.

For more information log on www.brijrbedu.org.

The second part is Casorati-Weierstrass theorem. Let $f(z)$ be analytic in some deleted neighborhood N of a. Suppose that there exists $\epsilon>0$ such that $|f(z)-\eta|<\epsilon$ is not satisfied for any $z \in N$ i.e. $|f(z)-\eta| \geq \epsilon$ for every $z \in N$. Let $g(z)=\frac{1}{f(z)-\eta}$. Then $g(z)$ is analytic in N and $g(z)$ is bounded in N, therefore $g(z)$ has a removable singularity at a. Since $g(z)$ is not constant as $f(z)$ is not constant, either $g(a) \neq 0$ or $g(z)$ has a zero of order $k>0$ at $z=a$. This means that $f(z)-\eta$ is either analytic at $z=a$ or $f(z)-\eta$ has a pole of order k at $z=a$. But this is not true, because $f(z)$ has an essential singularity at $z=a$. Thus our assumption is false i.e. we must have $z \in N$ for which $|f(z)-\eta|<\epsilon$. Note that we could take our deleted neighborhood N of the type $0<|z-a|<\delta \leq \rho$.

