UPSC Civil Services Main 1986 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Let $f(z)$ be single valued and analytic within and on a simple closed curve C. If z_{0} is any point in the interior of C, then show that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}
$$

where the integral in taken in the positive sense around C.
Solution. This is known as the Cauchy integral formula. We shall show that given $\epsilon>0$

$$
\left|\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right)\right|<\epsilon
$$

which implies the result as ϵ is arbitrary.
Since $f(z)$ is analytic at z_{0}, it is continuous at z_{0}, therefore given $\epsilon>0$ as above, there exists a $\delta>0$ such that $\left|z-z_{0}\right| \leq \delta \Longrightarrow\left|f(z)-f\left(z_{0}\right)\right|<\epsilon$. We choose $\delta>0$ so small that the disc $\left|z-z_{0}\right|<\delta$ lies within the interior of C. Then by Cauchy-Goursat's theorem (See 1987, 1(b)) we have

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{z-z_{0}}
$$

where γ is the circle $\left|z-z_{0}\right|=\rho<\delta$ and is positively oriented.
Now put $z-z_{0}=\rho e^{i \theta}$ to get

$$
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{0}^{2 \pi} \frac{i \rho e^{i \theta} d \theta}{\rho e^{i \theta}}=2 \pi i
$$

Therefore

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right)\right| & =\left|\frac{1}{2 \pi i}\left[\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{\gamma} \frac{d z}{z-z_{0}}\right]\right| \\
& =\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \\
& \leq \frac{1}{2 \pi \rho} \epsilon \int_{\gamma}|d z|=\frac{\epsilon}{2 \pi \rho} \text { length of } \gamma=\epsilon
\end{aligned}
$$

Thus $\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right)=0$ and the proof is complete.
Question 1(b) By the contour integration method show that

1. $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi \sqrt{2}}{4 a^{2}}$ where $a>0$.
2. $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$

Solution.

1. We take $f(z)=\frac{1}{z^{4}+a^{4}}$ and the contour C consisting of Γ a semicircle of radius R with center $(0,0)$ lying in the upper half plane, and the line $A B$ joining $(-R, 0)$ and $(R, 0) . C$ is positively oriented.

(a) Poles of $f(z)$ are given by $z= \pm a e^{ \pm \frac{\pi i}{4}}= \pm a\left[\cos \frac{\pi}{4} \pm i \sin \frac{\pi}{4}\right]$, out of which $z=$ $a e^{\frac{\pi i}{4}}, z=-a e^{-\frac{\pi i}{4}}$ are in the upper half plane.
Residue at $z=a e^{\frac{\pi i}{4}}$ is $\frac{1}{4 a^{3} e^{\frac{3 \pi i}{4}}}=\frac{1}{4 a^{3}}\left[-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right]^{-1}$.
Residue at $z=-a e^{-\frac{\pi i}{4}}$ is $\frac{-1}{4 a^{3} e^{-\frac{3 \pi i}{4}}}=\frac{-1}{4 a^{3}}\left[-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right]^{-1}$.
Sum of residues is $\frac{\sqrt{2}}{4 a^{3}}\left[\frac{1}{i-1}+\frac{1}{1+i}\right]=-\frac{i \sqrt{2}}{4 a^{3}}$. Thus

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{z^{4}+a^{4}}=\frac{2 \pi i \cdot-i \sqrt{2}}{4 a^{3}}=\frac{2 \sqrt{2} \pi}{4 a^{3}}=\frac{\pi}{\sqrt{2} a^{3}}
$$

(b)

$$
\left|\int_{\Gamma} \frac{d z}{z^{4}+a^{4}}\right| \leq\left|\int_{0}^{\pi} \frac{R i e^{i \theta}}{R^{4}-a^{4}}\right| \leq \frac{\pi R}{R^{4}-a^{4}}
$$

because on $\Gamma\left|z^{4}+a^{4}\right| \geq\left|z^{4}\right|-a^{4}=R^{4}-a^{4}$. Thus $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{d z}{z^{4}+a^{4}}=0$.

For more information log on www.brijrbedu.org.
(c) $\lim _{R \rightarrow \infty} \int_{A B} \frac{d z}{z^{4}+a^{4}}=\int_{-\infty}^{\infty} \frac{d x}{x^{4}+a^{4}}=2 \int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}$.

Using (a), (b) and (c) we get

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{z^{4}+a^{4}}=2 \int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{\sqrt{2} a^{3}}
$$

Thus

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{2 \sqrt{2} a^{3}}=\frac{\pi \sqrt{2}}{4 a^{3}}
$$

as required.
2. We take $f(z)=\frac{e^{i z}}{z}$ and the contour C consisting of the line $A B$ joining $(-R, 0)$ to $(-r, 0)$, the semicircle γ of radius r with center $(0,0)$, the line $C D$ joining $(r, 0)$ to $(R, 0)$ and Γ a semicircle of radius R with center $(0,0)$. The contour lies in the upper half plane and is oriented anticlockwise. We took γ as part of the contour to avoid the pole at $(0,0)$.

We will eventually make $R \rightarrow \infty$ and $r \rightarrow 0$.
(a) Since the integrand $\frac{e^{i z}}{z}$ has no poles in the upper half plane, it follows that

$$
\lim _{R \rightarrow \infty, r \rightarrow 0} \int_{C} \frac{e^{i z}}{z} d z=0
$$

(b) In order to prove that $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{i z}}{z} d z=$ 0 , we use Jordan inequality, which states that $\sin \theta \geq \frac{2 \theta}{\pi}$ for $0 \leq \theta \leq \frac{\pi}{2}$ - compare the graphs as shown in the figure.

$$
\begin{aligned}
\left|\int_{\Gamma} \frac{e^{i z}}{z} d z\right| & \leq \int_{0}^{\pi} \frac{e^{-R \sin \theta}}{R} R d \theta=2 \int_{0}^{\frac{\pi}{2}} e^{-R \sin \theta} d \theta \quad(\because \sin (\pi-\theta)=\sin \theta) \\
& \leq 2 \int_{0}^{\frac{\pi}{2}} e^{-R \frac{2 \theta}{\pi}} d \theta=2 \cdot \frac{\pi}{2 R}\left[1-e^{-R}\right]
\end{aligned}
$$

showing that $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{i z}}{z} d z=0$ as $\lim _{R \rightarrow \infty} \frac{1-e^{-R}}{R}=0$.

For more information log on www.brijrbedu.org.
(c) Now $\frac{e^{i z}}{z}=\frac{1}{z}+\phi(z)$ where $\phi(z)$ is analytic at $z=0$. Thus given $\epsilon>0, \exists \delta>$ 0 such that $|z|<\delta \Rightarrow|\phi(z)|<\epsilon$. Thus $\left|\int_{\gamma} \phi(z) d z\right| \leq \epsilon \cdot$ (length of γ) \Rightarrow $\lim _{r \rightarrow 0} \int_{\gamma} \phi(z) d z=0$.

$$
\int_{\gamma} \frac{d z}{z}=\int_{\pi}^{0} \frac{r e^{i \theta} i d \theta}{r e^{i \theta}}=-i \pi
$$

(d)

$$
\lim _{R \rightarrow \infty, r \rightarrow 0} \int_{A B} \frac{e^{i z}}{z} d z=\int_{-\infty}^{0} \frac{e^{i x}}{x} d x, \lim _{R \rightarrow \infty, r \rightarrow 0} \int_{C D} \frac{e^{i z}}{z} d z=\int_{0}^{\infty} \frac{e^{i x}}{x} d x
$$

Using these results, we get

$$
\begin{equation*}
0=\lim _{R \rightarrow \infty, r \rightarrow 0} \int_{C} \frac{e^{i z}}{z} d z=\int_{-\infty}^{0} \frac{e^{i x}}{x} d x-i \pi+\int_{0}^{\infty} \frac{e^{i x}}{x} d x \tag{*}
\end{equation*}
$$

Since

$$
\int_{-\infty}^{0} \frac{e^{i x}}{x} d x=-\int_{0}^{\infty} \frac{e^{-i y}}{y} d y
$$

we get

$$
\int_{0}^{\infty} \frac{e^{i x}}{x} d x-\int_{0}^{\infty} \frac{e^{-i x}}{x} d x=i \pi
$$

or

$$
\int_{0}^{\infty} \frac{e^{i x}-e^{-i x}}{2 i} \frac{1}{x} d x=\frac{\pi}{2} \Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

Note that in $\left(^{*}\right)$ we cannot write $\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x=\pi i$ and conclude that $\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=$ $\pi, \int_{-\infty}^{\infty} \frac{\cos x}{x} d x=0$, because $\int_{-\infty}^{\infty} \frac{\cos x}{x} d x$ has convergence problem at $x=0$.

