UPSC Civil Services Main 1987 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) By considering the Laurent series for $f(z) = \frac{1}{(1-z)(z-2)}$ prove that if C is a closed contour oriented in the counter clockwise direction, then $\int_C f(z) dz = 2\pi i$.

Solution. Laurent's theorem states that if f(z) is analytic throughout the annular region $R_1 < |z - z_0| < R_2$ and C is any positively oriented simple closed curve lying in the annular region and having z_0 in its interior, then

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \text{ where } a_n = \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{(z - z_0)^{n+1}}$$

Thus $\int_C f(z) dz = 2\pi i a_{-1}.$

Now in our case: $R_1 = 1, R_2 = 2, z_0 = 0$ i.e. f(z) is analytic in 1 < |z| < 2. Moreover

$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{z} \left(1 - \frac{1}{z}\right)^{-1} + \frac{1}{2} \left(1 - \frac{z}{2}\right)^{-1}$$

Since $|\frac{1}{z}| < 1$ and $|\frac{z}{2}| < 1$, we get $f(z) = \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ as the Laurent expansion of f(z) valid in 1 < |z| < 2. Thus if C is a simple closed contour lying in 1 < |z| < 2 with the origin in its interior, then $\int_C f(z) dz = 2\pi i$, since $a_{-1} = 1$.

Note that in this question, the curve C has not been clearly specified. If C is in the region 1 < |z| < 2, but does not contain the origin, then $\int_C f(z) dz = 0$.

Note: What about the other cases — C lies in |z| < 1 or |z| > 2

For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012. **Question 1(b)** State and prove Cauchy's residue theorem.

Solution. Statement: If C is a simple closed contour oriented anticlockwise and f(z)is a complex valued function which is analytic on and within the interior of C except for a finite number of poles $z_1, \ldots z_n$ in the interior of C, then

$$\int_{C} f(z) dz = 2\pi i \sum_{r=1}^{n} \text{Residue of } f(z) \text{ at } z = z_{r}$$

Proof: We enclose each $z_j, 1 \leq j \leq n$ is a small disc C_j such that C_j along with its boundary lies within C and, and these discs are small enough that C_j and C_k , $j \neq k$ do not overlap, or even touch on their boundaries. We now use Cauchy-Goursat theorem:

Theorem (Caucy-Goursat): If C is a simple closed positively oriented contour and C_1, \ldots, C_n are simple closed positively oriented contours which lie within C, and whose interiors have no points in common, and if f(z) is a function which is analytic within and on C except for the interiors of C_j , $1 \leq j \leq n$, then

$$\int_C f(z) \, dz = \sum_{j=1}^n \int_{C_j} f(z) \, dz$$

Using this theorem we see that in our case

$$\int_C f(z) \, dz = \sum_{j=1}^n \int_{C_j} f(z) \, dz$$

But in the last question we have seen that

$$\int_{C_j} f(z) dz = 2\pi i \times \text{Residue of } f(z) \text{ at } z = z_j$$

(This is Laurent's theorem.) Thus

$$\int_{C} f(z) dz = 2\pi i \sum_{r=1}^{n} \text{Residue of } f(z) \text{ at } z = z_{r}$$

Question 1(c) By the method of contour integration show that

$$\int_0^\infty \frac{\cos x}{x^2 + a^2} \, dx = \frac{\pi e^{-a}}{2a}, \ a > 0$$

Solution. See 2002, question 2(b).

2 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

	6
	4