UPSC Civil Services Main 1987 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) By considering the Laurent series for $f(z)=\frac{1}{(1-z)(z-2)}$ prove that if C is a closed contour oriented in the counter clockwise direction, then $\int_{C} f(z) d z=2 \pi i$.

Solution. Laurent's theorem states that if $f(z)$ is analytic throughout the annular region $R_{1}<\left|z-z_{0}\right|<R_{2}$ and C is any positively oriented simple closed curve lying in the annular region and having z_{0} in its interior, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { where } a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

Thus $\int_{C} f(z) d z=2 \pi i a_{-1}$.
Now in our case: $R_{1}=1, R_{2}=2, z_{0}=0$ i.e. $f(z)$ is analytic in $1<|z|<2$. Moreover

$$
f(z)=\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z}\left(1-\frac{1}{z}\right)^{-1}+\frac{1}{2}\left(1-\frac{z}{2}\right)^{-1}
$$

Since $\left|\frac{1}{z}\right|<1$ and $\left|\frac{z}{2}\right|<1$, we get $f(z)=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}$ as the Laurent expansion of $f(z)$ valid in $1<|z|<2$. Thus if C is a simple closed contour lying in $1<|z|<2$ with the origin in its interior, then $\int_{C} f(z) d z=2 \pi i$, since $a_{-1}=1$.

Note that in this question, the curve C has not been clearly specified. If C is in the region $1<|z|<2$, but does not contain the origin, then $\int_{C} f(z) d z=0$.

Note: What about the other cases - C lies in $|z|<1$ or $|z|>2$

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Question 1(b) State and prove Cauchy's residue theorem.
Solution. Statement: If C is a simple closed contour oriented anticlockwise and $f(z)$ is a complex valued function which is analytic on and within the interior of C except for a finite number of poles $z_{1}, \ldots z_{n}$ in the interior of C, then

$$
\int_{C} f(z) d z=2 \pi i \sum_{r=1}^{n} \text { Residue of } f(z) \text { at } z=z_{r}
$$

Proof: We enclose each $z_{j}, 1 \leq j \leq n$ is a small disc C_{j} such that C_{j} along with its boundary lies within C and, and these discs are small enough that C_{j} and $C_{k}, j \neq k$ do not overlap, or even touch on their boundaries. We now use Cauchy-Goursat theorem:

Theorem (Caucy-Goursat): If C is a simple closed positively oriented contour and $C_{1}, \ldots C_{n}$ are simple closed positively oriented contours which lie within C, and whose interiors have no points in common, and if $f(z)$ is a function which is analytic within and on C except for the interiors of $C_{j}, 1 \leq j \leq n$, then

$$
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z
$$

Using this theorem we see that in our case

$$
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z
$$

But in the last question we have seen that

$$
\int_{C_{j}} f(z) d z=2 \pi i \times \text { Residue of } f(z) \text { at } z=z_{j}
$$

(This is Laurent's theorem.) Thus

$$
\int_{C} f(z) d z=2 \pi i \sum_{r=1}^{n} \text { Residue of } f(z) \text { at } z=z_{r}
$$

Question 1(c) By the method of contour integration show that

$$
\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{2 a}, a>0
$$

Solution. See 2002, question 2(b).

