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Complex Analysis

Question 1(a) By evaluating

∫
dz

z + 2
over a suitable contour C prove that

∫ π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 0

Solution. By using the unit circle |z| = 1 as contour, and integrating

∫
|z|=1

dz

z + 2
, we have

proved

∫ 2π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 0 — see 1997, question 1(b). Now in

∫ 2π

π

1 + 2 cos θ

5 + 4 cos θ
dθ put

θ = 2π − φ so that∫ 2π

π

1 + 2 cos θ

5 + 4 cos θ
dθ =

∫ 0

π

1 + 2 cos(2π − φ)

5 + 4 cos(2π − φ)
(−dφ) =

∫ π

0

1 + 2 cosφ

5 + 4 cosφ
dφ

Thus

∫ 2π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 2

∫ π

0

1 + 2 cos θ

5 + 4 cos θ
dθ showing that

∫ π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 0

.

Note: If the contour was not prescribed, we could have put z = eiθ to get∫ 2π

0

1 + 2 cos θ

5 + 4 cos θ
dθ =

1

i

∫
|z|=1

z2 + z + 1

z(5z + 2z2 + 2)
dz
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The integrand has two poles at z = 0, z = −1
2

inside |z| = 1, which are simple poles. The
residue at z = 0 is 1

2
and the residue at z = −1

2
is −1

2
, so we get∫

|z|=1

z2 + z + 1

z(5z + 2z2 + 2)
dz = 0⇒

∫ 2π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 0

Question 1(b) If f(z) is analytic in |z| ≤ R and x, y lie inside the disc, evaluate the

integral

∫
|z|=R

f(z) dz

(z − x)(z − y)
and deduce that a function analytic and bounded for all finite

z is a constant.

Solution. Cauchy’s integral formula states that if f(z) is analytic on and within the disc
|z| ≤ R, then for any ζ which lies within the disc

f(ζ) =
1

2πi

∫
|z|=R

f(z) dz

ζ − z

Thus∫
|z|=R

f(z) dz

(z − x)(z − y)
=

1

x− y

[∫
|z|=R

f(z) dz

z − x
−
∫
|z|=R

f(z) dz

z − y

]
=

2πi

x− y
[
f(x)− f(y)

]
We now prove the remaining part, which is Liouville’s theorem.
Let |f(z)| ≤M for every z. Clearly |z − x| ≥ |z| − |x| = R− |x| and similarly |z − y| ≥

R− |y| on |z| = R, and therefore∣∣∣∣∫
|z|=R

f(z) dz

(z − x)(z − y)

∣∣∣∣ ≤ M · 2πR
(R− |x|)(R− |y|)

Thus |f(x)− f(y)| ≤
∣∣∣∣ 1

2πi

∣∣∣∣ |x− y| ·M · 2πR(R− |x|)(R− |y|)
. Since

R

(R− |x|)(R− |y|)
→ 0 as R→∞,

it follows that |f(x)− f(y)| = 0 or f(x) = f(y), so f is constant.

Question 1(c) If f(z) =
∑∞

n=0 anz
n has radius of convergence R and 0 < r < R, prove

that
1

2π

∫ 2π

0

|f(reiθ)|2 dθ =
∞∑
n=0

|an|2r2n

Solution.

|f(z)|2 = f(z) · f(z) =
∞∑
n=0

anz
n

∞∑
m=0

am z
m =

∞∑
n=0

∑
p+q=n

apaqz
pzq

2
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



We know that if a power series has a radius of convergence R, then it is uniformly and
absolutely convergent in |z| ≤ r where 0 < r < R, therefore

1

2π

∫ 2π

0

|f(z)|2 dθ =
∞∑
n=0

1

2π

∫ 2π

0

∑
p+q=n

apaqr
prqei(p−q)θ dθ

Since
∫ 2π

0
ei(p−q)θ dθ = 0 when p 6= q, we get

1

2π

∫ 2π

0

|f(z)|2 dθ =
∞∑
n=0

|an|2r2n

(Note: This shows that if |f(z)| ≤M on |z| = r, then
∑∞

n=0 |an|2r2n ≤M2.)

Question 2(a) Evaluate

∫
C

zez dz

(z − a)3
if a lies inside the closed contour C.

Solution. Clearly the only pole of
zez

(z − a)3
is of order 3 at z = a. The residue at this pole

is

1

2!

d2

dz2

(
(z − a)3zez

(z − a)3

)
z=a

=
1

2

d

dz

(
zez + ez

)
z=a

=
1

2

(
zez + ez + ez

)
z=a

= ea
(

1 +
a

2

)
Thus by Cauchy’s residue theorem,∫

C

zez dz

(z − a)3
= 2πi · ea

(
1 +

a

2

)
= πiea(2 + a)

Question 2(b) Prove ∫ ∞
0

e−x
2

cos(2bx) dx =

√
π

2
e−b

2

(b > 0)

by integrating e−z
2

along the boundary of the rectangle |x| ≤ R, 0 ≤ y ≤ b.

Solution.

Let the rectangle be ABCD where A =
(−R, 0), B = (R, 0), C = (R, b), D = (−R, b)
oriented positively. Since e−z

2
has no pole in-

side ABCD, we get lim
R→∞

∫
ABCD

e−z
2

dz = 0.

C

B(R, 0)A(−R, 0) (0, 0)

y = 0

C(R, b)D(−R, b)
y = b

x = Rx = −R

3
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



(Note that e−z
2

has no pole in the entire complex plane.)

1. On BC, z = R + iy and 0 ≤ y ≤ b, therefore∣∣∣∣∫
BC

e−z
2

dz

∣∣∣∣ =

∣∣∣∣∫ b

0

e−R
2

e−2Riye−i
2y2i dy

∣∣∣∣ ≤ e−R
2

∫ b

0

ey
2

dy = (constant)e−R
2

Clearly e−R
2 → 0 as R→∞, so lim

R→∞

∫
BC

e−z
2

dz = 0.

2. On DA, z = −R + iy and 0 ≤ y ≤ b, therefore∣∣∣∣∫
DA

e−z
2

dz

∣∣∣∣ =

∣∣∣∣∫ 0

b

e−R
2

e2Riye−i
2y2i dy

∣∣∣∣ ≤ e−R
2

∫ b

0

ey
2

dy

Thus lim
R→∞

∫
DA

e−z
2

dz = 0.

3. On AB, z = x so lim
R→∞

∫
AB

e−z
2

dz =

∫ ∞
−∞

e−x
2

dx =
√
π.

4. On CD, z = x+ ib, therefore

lim
R→∞

∫
CD

e−z
2

dz =

∫ −∞
∞

e−x
2

e−i
2b2e−2ibx dx = −eb2

∫ ∞
−∞

e−x
2

[cos 2bx− i sin 2bx] dx

Using the above calculations, we get

0 = lim
R→∞

∫
C

e−z
2

dz =
√
π − eb2

∫ ∞
−∞

e−x
2

[cos 2bx− i sin 2bx] dx

Equating real and imaginary parts,∫ ∞
−∞

e−x
2

sin 2bx dx = 0

and ∫ ∞
−∞

e−x
2

cos 2bx dx =
√
πe−b

2

Thus ∫ ∞
0

e−x
2

cos 2bx dx =
1

2

∫ ∞
−∞

e−x
2

cos 2bx dx =

√
πe−b

2

2
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Question 2(c) Prove that the coefficients cn of the expansion

1

1− z − z2
=
∞∑
n=0

cnz
n

satisfy cn = cn−1 + cn−2, n ≥ 2. Determine cn.

Solution. z2 + z − 1 = 0⇒ z = −1±
√

5
2

. Let λ = −1+
√

5
2

, µ = −1−
√

5
2

. Thus f(z) = 1
1−z−z2 is

analytic in the disc |z| < λ as both the singularities at z = λ and z = µ lie outside it. Thus
f(z) has Taylor series expansion with center z = 0.

Let f(z) =
∑∞

n=0 cnz
n, then (1 − z − z2)

∑∞
n=0 cnz

n = 1. Equating coefficients of like
powers we get

c0 = 1

c1 − c0 = 0

c2 − c1 − c0 = 0

. . .

cn − cn−1 − cn−2 = 0

Thus cn = cn−1 + cn−2, n ≥ 2. The cn’s are Fibonacci numbers.
Now

f(z) =
−1

(z − λ)(z − µ)

=
−1

λ− µ

[
1

z − λ
− 1

z − µ

]
=
−1√

5

[
−1

λ

(
1− z

λ

)−1

− −1

µ

(
1− z

µ

)−1]
If we confine z to the disc |z| < λ, then | z

λ
| < 1, | z

µ
| < 1 and we have

f(z) =
1√
5

[ ∞∑
n=0

zn

λn+1
−
∞∑
n=0

zn

µn+1

]
=
∞∑
n=0

cnz
n

where cn are given as above. But the Taylor series of a function is unique, therefore we have

cn =
1√
5

[
1

λn+1
− 1

µn+1

]
=

1√
5

[(
2√

5− 1

)n+1

−
(
−2√
5 + 1

)n+1]
=

1√
5

[(
2(
√

5 + 1)

5− 1

)n+1

−
(
−2(
√

5− 1)

5− 1

)n+1]
=

1√
5

[(√
5 + 1

2

)n+1

+ (−1)n
(√

5− 1

2

)n+1]
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