UPSC Civil Services Main 1989 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Evaluate the integral

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z} d z}{z(1-z)^{3}}
$$

if

1. the point 0 lies inside C and the point 1 lies outside C.
2. both 0 and 1 lie inside C.
3. the point 1 lies inside C and the point 0 lies outside C.

Solution. The only possible poles of $\frac{e^{z}}{z(z-1)^{3}}$ are $z=0$ and $z=1$. Clearly $z=0$ is a simple pole, and residue at $z=0$ is $\lim _{z \rightarrow 0} \frac{z e^{z}}{z(1-z)^{3}}=1$.

We have a triple pole at $z=1$, and the residue at $z=1$ is $\frac{1}{2!} \frac{d^{2}}{d z^{2}}\left(\frac{(z-1)^{3} e^{z}}{z(1-z)^{3}}\right)_{z=1}=$ $-\frac{1}{2} \frac{d}{d z}\left(\frac{z e^{z}-e^{z}}{z^{2}}\right)_{z=1}=-\frac{1}{2}\left(\frac{\left(z^{2}\left(z e^{z}+e^{z}-e^{z}\right)-2 z\left(z e^{z}-e^{z}\right)\right.}{z^{4}}\right)_{z=1}=-\frac{e}{2}$.

By Cauchy's residue theorem, $\frac{1}{2 \pi i} \int_{C} \frac{e^{z} d z}{z(1-z)^{3}}=$ Sum of the residues at poles of integrand within C.

1. The only pole inside C is 0 , so

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z} d z}{z(1-z)^{3}}=\text { Residue at } 0=1
$$

For more information log on www.brijrbedu.org.
2. Both poles are in C, so

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z} d z}{z(1-z)^{3}}=\text { Residue at } 0+\text { Residue at } 1=1-\frac{e}{2}
$$

3. The only pole inside C is 1 , so

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z} d z}{z(1-z)^{3}}=\text { Residue at } 1=-\frac{e}{2}
$$

Question 1(b) Let f have the Taylor expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in $|z|<R$ and let $s_{n}(z)=$ $\sum_{k=0}^{m} a_{k} z^{k}$. If $0<r<R$ and if $|z|<r$ show that

$$
s_{n}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}} \frac{w^{n+1}-z^{n+1}}{w-z} d w
$$

where γ is the circle $|w|=r$ oriented positively.
Solution. Since $\frac{w^{n+1}-z^{n+1}}{w-z}=w^{n}+w^{n-1} z+\ldots+w z^{n-1}+z^{n}=\sum_{k=0}^{n} w^{n-k} z^{k}$, it follows that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}} \frac{w^{n+1}-z^{n+1}}{w-z} d w & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}}\left(\sum_{k=0}^{n} w^{n-k} z^{k}\right) d w \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\sum_{k=0}^{n} z^{k} \frac{f(w)}{w^{k+1}}\right) d w \\
& =\frac{1}{2 \pi i} \sum_{k=0}^{n} z^{k} \int_{\gamma} \frac{f(w)}{w^{k+1}} d w
\end{aligned}
$$

But from Cauchy's integral formula we know that

$$
\frac{f^{(k)}(0)}{k!}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{k+1}} d w
$$

Therefore

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}} \frac{w^{n+1}-z^{n+1}}{w-z} d w=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} z^{k}
$$

For more information log on www.brijrbedu.org.

Since $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and the series is uniformly and absolutely convergent within $|z| \leq r$, we can differentiate it termwise. Thus we obtain $f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=$ $2 a_{2}, \ldots, f^{(k)}(0)=k!a_{k}, \ldots$. Substituting above, we get

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}} \frac{w^{n+1}-z^{n+1}}{w-z} d w=\sum_{k=0}^{n} a_{k} z^{k}=s_{n}(z)
$$

Question 1(c) By integrating $\frac{1}{1+z^{5}}$ around a suitable contour, prove that

$$
\int_{0}^{\infty} \frac{d x}{1+x^{5}}=\frac{\pi}{5} / \sin \frac{\pi}{5}
$$

Solution. We shall present two proofs.

$D\left(-R, \frac{2 \pi}{5}\right)$		$C\left(R, \frac{2 \pi}{5}\right)$
$x=-R$ $y=\frac{2 \pi}{5}$ C $x=R$ $A(-R, 0)$ $(0,0)$ $B(R, 0)$		

Residue of $f(z)$ at $z=\frac{\pi i}{5}$ is $\lim _{z \rightarrow \frac{\pi i}{5}} \frac{\left(z-\frac{\pi i}{5}\right) e^{z}}{1+e^{5 z}}=\frac{e^{\frac{\pi i}{5}}}{5 e^{i \pi}}=-\frac{e^{\frac{\pi i}{5}}}{5}$. Thus

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{e^{z} d z}{1+e^{5 z}}=-\frac{2 \pi i e^{\frac{\pi i}{5}}}{5}
$$

Now we evaluate the integral on all 4 sides of the rectangle.
1.

$$
\left|\int_{B C} \frac{e^{z} d z}{1+e^{5 z}}\right|=\left|\int_{0}^{\frac{2 \pi}{5}} \frac{e^{R+i y}}{e^{5 z}+1} i d y\right| \leq \int_{0}^{\frac{2 \pi}{5}} \frac{e^{R}}{e^{5 R}-1} d y \leq \frac{2 \pi}{5} \frac{e^{R}}{e^{5 R}-1}
$$

because $\left|e^{5 z}+1\right| \geq\left|e^{5 z}\right|-1=\left|e^{5 R+5 i y}\right|-1=e^{5 R}-1$. as on $B C, z=R+i y$. Thus $\lim _{R \rightarrow \infty} \int_{B C} \frac{e^{z} d z}{1+e^{5 z}}=0$.
2. On $D A, z=-R+i y$ and therefore $\left|e^{5 z}+1\right| \geq 1-\left|e^{5 z}\right|=1-e^{-5 R}$. This shows that

$$
\left|\int_{D A} \frac{e^{z} d z}{1+e^{5 z}}\right| \leq \frac{2 \pi}{5} \frac{e^{-R}}{1-e^{-5 R}}
$$

$$
\text { As } \frac{e^{-R}}{1-e^{-5 R}} \rightarrow 0 \text { as } R \rightarrow \infty, \text { it follows that } \lim _{R \rightarrow \infty} \int_{D A} \frac{e^{z} d z}{1+e^{5 z}}=0
$$

3. On $A B, z=x$ so

$$
\lim _{R \rightarrow \infty} \int_{A B} \frac{e^{z} d z}{1+e^{5 z}}=\int_{-\infty}^{\infty} \frac{e^{x} d x}{1+e^{5 x}}
$$

4. On $C D, z=x+\frac{2 \pi i}{5}$, so

$$
\lim _{R \rightarrow \infty} \int_{C D} \frac{e^{z} d z}{1+e^{5 z}}=\int_{\infty}^{-\infty} \frac{e^{x} e^{\frac{2 \pi i}{5}} d x}{1+e^{5 x}}
$$

Using the above, we get

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{e^{z} d z}{1+e^{5 z}}=\int_{-\infty}^{\infty} \frac{e^{x} d x}{1+e^{5 x}}-e^{\frac{2 \pi i}{5}} \int_{-\infty}^{\infty} \frac{e^{x} d x}{1+e^{5 x}}=-\frac{2 \pi i e^{\frac{\pi i}{5}}}{5}
$$

or

$$
\int_{-\infty}^{\infty} \frac{e^{x} d x}{1+e^{5 x}}=-\frac{2 \pi i}{5} \frac{e^{\frac{\pi i}{5}}}{1-e^{\frac{2 \pi i}{5}}}=\frac{\pi}{5} \frac{2 i}{e^{\frac{\pi i}{5}}-e^{\frac{\pi i}{5}}}=\frac{\pi}{5} / \sin \frac{\pi}{5}
$$

We now put $e^{x}=t$ to get $\int_{0}^{\infty} \frac{d t}{1+t^{5}}=\frac{\pi}{5} / \sin \frac{\pi}{5}$ as desired.
Proof 2: Let $f(z)=\frac{1}{1+z^{5}}$ and the contour be C, the angular region $O A B O$ where $O A$ is the line joining $(0,0),(R, 0), A B$ is the arc of the circle $|z|=R$ and B is on the circle such that angle $\angle A O B=\frac{2 \pi}{5}$. C is oriented positively. We let $R \rightarrow \infty$ eventually. The only pole in the sector is $z=\frac{\pi i}{5}$ and it is a simple pole.

Using Cauchy's residue theorem, we get

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{1+z^{5}}=2 \pi i \times \text { Residue at } e^{\frac{\pi i}{5}}=2 \pi i \lim _{z \rightarrow e^{\frac{\pi i}{5}}} \frac{z-e^{\frac{\pi i}{5}}}{1+z^{5}}=\frac{2 \pi i}{5 e^{\frac{4 \pi i}{5}}}
$$

1. On $A B, z=R e^{i \theta},\left|z^{5}+1\right| \geq|z|^{5}-1=R^{5}-1,0 \leq \theta \leq \frac{2 \pi}{5}$ and therefore

$$
\left|\int_{A B} \frac{d z}{1+z^{5}}\right| \leq\left|\int_{0}^{\frac{2 \pi}{5}} \frac{R i e^{i \theta} d \theta}{R^{5}-1}\right| \leq \frac{2 \pi}{5} \frac{R}{R^{5}-1}
$$

showing that $\lim _{R \rightarrow \infty} \int_{A B} \frac{d z}{1+z^{5}}=0$.
2. On $O A, z=x$ and therefore $\lim _{R \rightarrow \infty} \int_{O A} \frac{d z}{1+z^{5}}=\int_{0}^{\infty} \frac{d x}{1+x^{5}}$.

For more information log on www.brijrbedu.org.
3. On $B O, z=R e^{\frac{2 \pi i}{5}}$ and R varies from ∞ to 0 . Therefore

$$
\lim _{R \rightarrow \infty} \int_{B O} \frac{d z}{1+z^{5}}=\int_{\infty}^{0} \frac{e^{\frac{2 \pi i}{5}} d R}{1+\left(R e^{\frac{2 \pi i}{5}}\right)^{5}}=-e^{\frac{2 \pi i}{5}} \int_{0}^{\infty} \frac{d R}{1+R^{5}}
$$

Thus

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{1+z^{5}} & =\int_{0}^{\infty} \frac{d x}{1+x^{5}}-e^{\frac{2 \pi i}{5}} \int_{0}^{\infty} \frac{d R}{1+R^{5}}=\frac{2 \pi i}{5 e^{\frac{4 \pi i}{5}}} \\
\Rightarrow \int_{0}^{\infty} \frac{d x}{1+x^{5}} & =\frac{2 \pi i}{5 e^{\frac{4 \pi i}{5}}} \frac{1}{1-e^{\frac{2 \pi i}{5}}}=\frac{2 \pi i}{5 e^{\frac{4 \pi i}{5}}} \frac{e^{-\frac{\pi i}{5}}}{e^{-\frac{\pi i}{5}}-e^{\frac{\pi i}{5}}} \\
& =\frac{\pi}{5} \frac{2 i}{e^{\frac{\pi i}{5}}-e^{-\frac{\pi i}{5}}}=\frac{\pi}{5} / \sin \frac{\pi}{5}
\end{aligned}
$$

Note: We have provided both proofs because sometimes the examiner prescribes the contour.

Question 2(a) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be analytic for $|z|<1+\delta,(\delta>0)$. Prove that the polynomial $p_{k}(z)$ of degree k which minimizes the integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)-p_{k}\left(e^{i \theta}\right)\right|^{2} d \theta
$$

is $p_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}$. Prove that the minimum value is given by $\sum_{n=k+1}^{\infty}\left|a_{n}\right|^{2}$.
Solution. On $|z|=1, z=e^{i \theta}$ and

$$
\int_{0}^{2 \pi} f(z) \overline{f(z)} d \theta=\int_{0}^{2 \pi} \sum_{n, m=0}^{\infty} a_{n} \overline{a_{m}} e^{i(n-m) \theta} d \theta
$$

Now termwise integration is justified because the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is uniformly convergent in $|z| \leq 1$ as the given series is convergent in $|z|<1+\delta$ with $\delta>0$. Thus

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(z)|^{2} d \theta=\frac{1}{2 \pi} \sum_{n, m=0}^{\infty} a_{n} \overline{a_{m}} \int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta=\sum_{0}^{\infty}\left|a_{n}\right|^{2}
$$

as $\int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta=0$ or 2π according as $n \neq m$ or $n=m$.
Let $p_{k}(z)=\sum_{n=0}^{k} b_{n} z^{n}$, then as above

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f(z)-p_{k}(z)\right|^{2} d \theta=\sum_{n=0}^{k}\left|a_{n}-b_{n}\right|^{2}+\sum_{n=k+1}^{\infty}\left|a_{n}\right|^{2}
$$

Clearly the right hand side is minimum if and only if $\sum_{n=0}^{k}\left|a_{n}-b_{n}\right|^{2}=0 \Rightarrow a_{n}=b_{n}$ for $n=1, \ldots, k$, as all terms in the sum are non-negative. Thus $p_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}$ and the minimum value of the integral is $\sum_{n=k+1}^{\infty}\left|a_{n}\right|^{2}$.

Question 2(b) If f is regular in the whole plane and the values of $f(z)$ do not lie in the disc with center w_{0} and radius δ, show that f is constant.

Solution. Liouville's Theorem: If $f(z)$ is entire, i.e. regular in the whole plane, and bounded, then $f(z)$ is constant.

Consider the function $F(z)=\frac{1}{f(z)-w_{0}}$. Since $f(z)$ is entire and $f(z) \neq w_{0}$ (note that if $f(z)=w_{0}$ for some z then one of its values would lie inside the disc with center w_{0} and radius δ). it follows that $F(z)$ is an entire function. Since $\left|f(z)-w_{0}\right|>\delta$ for every z, $|F(z)|<\frac{1}{\delta}$ for every z, thus by Liouville's theorem $F(z) \equiv c$ a constant, and therefore $f(z)$ is a constant.

Proof of Liouville's theorem: From Cauchy's integral formula, we have for any z_{0} and ρ however large

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\rho} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

Now $f(z)$ is bounded, say $|f(z)| \leq M$ and $\left|z-z_{0}\right|=\rho$, so let $z-z_{0}=\rho e^{i \theta}, d z=\rho i e^{i \theta} d \theta$ which gives us

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{2 \pi \rho^{2}} 2 \pi \rho=\frac{M}{\rho}
$$

Letting $\rho \rightarrow \infty$, we get $f^{\prime}\left(z_{0}\right)=0$ for any z_{0}, thus $f^{\prime}(z)=0$ so f is a constant.
Question 2(c) Find the singularities of $\sin \left(\frac{1}{1-z}\right)$ in the complex plane.
Solution. Since $\frac{1}{1-z}$ is analytic everywhere except $z=1, \sin \left(\frac{1}{1-z}\right)$ is regular everywhere except $z=1$. At $z=1$ the function has an essential singularity - Clearly $\sin \left(\frac{1}{1-z}\right)=0 \Leftrightarrow$ $\frac{1}{1-z}=n \pi, n \neq 0 \Leftrightarrow z=1-\frac{1}{n \pi}, n \in \mathbb{Z}, n \neq 0$. Thus 1 is a limit point of zeros of $\sin \left(\frac{1}{1-z}\right)$ and therefore $\sin \left(\frac{1}{1-z}\right)$ has an essential singularity at $z=1$.

Note that $\sin \left(\frac{1}{1-z}\right)$ is regular at ∞ as $\sin \left(\frac{\zeta}{1-\zeta}\right)$ is regular at $\zeta=0$.

