UPSC Civil Services Main 1990 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Let f be regular for $|z|<R$, prove that, if $0<r<R$,

$$
f^{\prime}(0)=\frac{1}{\pi r} \int_{0}^{2 \pi} u(\theta) \exp (-i \theta) d \theta
$$

where $u(\theta)=\operatorname{Re} f\left(r e^{i \theta}\right)$.
Solution. Using Cauchy's integral formula, it is easily deduced that for any z in the interior of $\left\{C_{R}:|z|=R\right\}$, we have

$$
\frac{f^{(t)}(z)}{t!}=\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta)}{(\zeta-z)^{t+1}} d \zeta
$$

In particular, $f^{\prime}(0)=\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta)}{\zeta^{2}} d \zeta$.
Putting $\zeta=R e^{i \theta}, d \zeta=R i e^{i \theta} d \theta$, we get

$$
\begin{equation*}
f^{\prime}(0)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(R e^{i \theta}\right)}{R^{2} e^{2 i \theta}} R i e^{i \theta} d \theta=\frac{1}{2 \pi R} \int_{0}^{2 \pi} f\left(R e^{i \theta}\right) e^{-i \theta} d \theta \tag{1}
\end{equation*}
$$

We now consider the integral

$$
\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta) \zeta^{t-1}}{\left(R-\frac{\bar{z}}{R} \zeta\right)^{t+1}} d \zeta
$$

By Cauchy's residue theorem, the above integral is equal to $2 \pi i$ (sum of residues of the integrand within C_{R}). If $t \geq 1$, the only possibility of a pole could be at the point $\zeta=\frac{R^{2}}{\bar{z}}$,

For more information log on www.brijrbedu.org.
but $|z|=|\bar{z}|<R$, therefore $\left|\frac{R^{2}}{\bar{z}}\right|>\frac{R^{2}}{R}=R$, so $\frac{R^{2}}{\bar{z}}$ lies outside C_{R} and hence the integrand has no pole inside C_{R}, so

$$
\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta) \zeta^{t-1}}{\left(R-\frac{\bar{z}}{R} \zeta\right)^{t+1}} d \zeta=0 \text { for } t \geq 1
$$

In particular, taking $t=1, z=0$,

$$
\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta)}{R^{2}} d \zeta=0
$$

Thus we get

$$
\begin{align*}
0 & =\frac{1}{2 \pi R} \int_{0}^{2 \pi} f\left(R e^{i \theta}\right) e^{i \theta} d \theta \\
\Rightarrow 0 & =\frac{1}{2 \pi R} \int_{0}^{2 \pi} \bar{f}\left(R e^{i \theta}\right) e^{-i \theta} d \theta \tag{2}
\end{align*}
$$

Adding (1), (2), we get

$$
f^{\prime}(0)=\frac{1}{2 \pi R} \int_{0}^{2 \pi}\left(f\left(R e^{i \theta}\right)+\bar{f}\left(R e^{i \theta}\right)\right) e^{-i \theta} d \theta=\frac{1}{\pi R} \int_{0}^{2 \pi} u(\theta) \exp (-i \theta) d \theta
$$

as required.
Note 1: To get the desired form, we could have considered the integral over $\left\{C_{r}:|z|=\right.$ $r<R\}$ instead of C_{R} and in that case $\zeta=r e^{i \theta}$ and instead of R, we would have got r i.e.

$$
f^{\prime}(0)=\frac{1}{\pi r} \int_{0}^{2 \pi} u(\theta) \exp (-i \theta) d \theta
$$

Note 2: The integral

$$
\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(\zeta) \zeta^{t-1}}{\left(R-\frac{\bar{z}}{R} \zeta\right)^{t+1}} d \zeta
$$

plays an important role in questions of this type, and has to be kept in mind.
Question 1(b) Prove that the distance from the origin to the nearest zero of $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is at least $\frac{r\left|a_{o}\right|}{M+\left|a_{0}\right|}$ where r is any number not exceeding the radius of convergence of the series, and $M=M(r)=\sup _{|z|=r}|f(z)|$.
Solution. By Cauchy's integral formula,

$$
f(z)-f(0)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(\zeta) d \zeta}{\zeta-z}-\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(\zeta) d \zeta}{\zeta}
$$

where $|z|<r \leq R, R$ is the radius of convergence. If $f(z)=0$, then

$$
|f(0)| \leq \frac{1}{2 \pi} M\left|\int_{|\zeta|=r}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta}\right) d \zeta\right| \leq \frac{M}{2 \pi}|z| \int_{0}^{2 \pi}\left|\frac{r i e^{i \theta} d \theta}{r e^{i \theta}(r-|z|)}\right|=\frac{M|z|}{r-|z|}
$$

because $|\zeta-z| \geq|\zeta|-|z|=r-|z|$ on $|\zeta|=r$. Thus $r|f(0)| \leq|z|(M+|f(0)|) \Rightarrow|z| \geq \frac{|f(0)| r}{M+|f(0)|}$. Here $f(0)=a_{0}$, and the result follows.

Question 1(c) If $f=u+i v$ is regular throughout the complex plane, and au $+b v-c \geq 0$ for suitable constants a, b, c then f is constant.

Solution. Theorem: If $f(z)=u+i v$ is entire, and $u \leq 0$, then f is constant.
Proof: Consider $F(z)=e^{f(z)}$, then $F(z)$ is also entire. Moreover

$$
|F(z)|=\left|e^{u+i v}\right|=\left|e^{u}\right| \leq 1 \because u \leq 0
$$

Thus $F(z)$ is entire and bounded, hence is a constant by Liouville's theorem. Now $F^{\prime}(z)=$ $f^{\prime}(z) e^{f(z)}=0 \Rightarrow f^{\prime}(z)=0$ because $e^{f(z)} \neq 0$, so $f(z)$ is constant.

Corollary: If $f(z)=u+i v$ is entire, and $u \geq 0$, then f is constant. Proof: Consider $-f(z)=-u-i v$, then $-u \leq 0$ and $-f(z)$ is constant.

Now consider $F(z)=(a-i b) f(z)-c=(a u+b v-c)+i(a v-b u)$. Now $F(z)$ is entire, and $\operatorname{Re} F(z)=a u+b v-c \geq 0$, so $F(z)$ is constant, hence $f(z)$ is constant.

Question 2(a) Prove that $\int_{-\infty}^{\infty} \frac{x^{4} d x}{1+x^{8}}=\frac{\pi}{\sqrt{2}} \sin \frac{\pi}{8}$ using residue calculus.

Solution.

We take $f(z)=\frac{z^{4}}{1+z^{8}}$ and the contour C consisting of γ a semicircle of radius R with center $(0,0)$ lying in the upper half plane, and the line joining $(-R, 0)$ and $(R, 0)$. Finally we will let $R \rightarrow \infty$.

By Cauchy's residue theorem

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{C} \frac{z^{4} d z}{1+z^{8}} & =\int_{-\infty}^{\infty} \frac{x^{4} d x}{1+x^{8}}+\lim _{R \rightarrow \infty} \int_{\gamma} \frac{z^{4} d z}{1+z^{8}} \\
& =2 \pi i(\text { sum of residues at poles of } f(z) \text { in the upper half plane) }
\end{aligned}
$$

Now

$$
\left|\int_{\gamma} \frac{z^{4} d z}{1+z^{8}}\right| \leq\left|\int_{0}^{\pi} \frac{R^{4} e^{4 i \theta} R i e^{i \theta} d \theta}{R^{8}-1}\right| \leq \frac{\pi R^{5}}{R^{8}-1}
$$

because $\left|z^{8}+1\right| \geq\left|z^{8}\right|-1=R^{8}-1$ on $|z|=R$. Therefore

$$
\lim _{R \rightarrow \infty} \int_{\gamma} \frac{z^{4} d z}{1+z^{8}}=0
$$

$f(z)$ has poles at zeros of $z^{8}+1=0 \Rightarrow z^{8}=-1 \Rightarrow z^{8}=e^{(2 n+1) \pi i} \Rightarrow z=e^{\frac{(2 n+1) \pi i}{8}}, n \in \mathbb{Z}$. Clearly $z=e^{\frac{\pi i}{8}}, e^{\frac{3 \pi i}{8}}, e^{\frac{5 \pi i}{8}}, e^{\frac{7 \pi i}{8}}$ are the only poles of $f(z)$ in the upper half plane and all these
are simple poles. The residue at any simple pole z_{0} is $\frac{z_{0}^{4}}{8 z_{0}^{7}}=\frac{1}{8 z_{0}^{3}}$,

$$
\begin{aligned}
& \text { sum of residues at poles of } f(z) \text { in the upper half plane } \\
= & \frac{1}{8}\left(e^{-3 \pi i / 8}+e^{-9 \pi i / 8}+e^{-15 \pi i / 8}+e^{-21 \pi i / 8}\right) \\
= & \frac{1}{8}\left(e^{-3 \pi i / 8}-e^{-\pi i / 8}+e^{\pi i / 8}-e^{3 \pi i / 8}\right) \\
= & \frac{1}{8}\left(2 i \sin \frac{\pi}{8}-2 i \sin \frac{3 \pi}{8}\right) \\
= & \frac{i}{4}\left(\sin \frac{\pi}{8}-\cos \frac{\pi}{8}\right) \\
= & \frac{i \sqrt{2}}{4}\left(\cos \frac{\pi}{4} \sin \frac{\pi}{8}-\cos \frac{\pi}{8} \sin \frac{\pi}{4}\right) \\
= & -\frac{i}{2 \sqrt{2}} \sin \frac{\pi}{8}
\end{aligned}
$$

Thus

$$
\int_{-\infty}^{\infty} \frac{x^{4} d x}{1+x^{8}}=2 \pi i\left(-\frac{i}{2 \sqrt{2}} \sin \frac{\pi}{8}\right)=\frac{\pi}{\sqrt{2}} \sin \frac{\pi}{8}
$$

as required.
Question 2(b) Derive a series expansion of $\log \left(1+e^{z}\right)$ in powers of z.
Solution. Let $f(z)=\log \left(1+e^{z}\right)$, then

$$
f^{\prime}(z)=\frac{e^{z}}{1+e^{z}}=\frac{1}{2} e^{\frac{z}{2}} \frac{2}{e^{\frac{z}{2}}+e^{-\frac{z}{2}}}=\frac{1}{2} e^{\frac{z}{2}} \frac{1}{\cosh \frac{z}{2}}
$$

Let $g(z)=\cosh \frac{z}{2}$, then

$$
g^{(n)}(z)= \begin{cases}\frac{1}{2^{n}} \sinh \frac{z}{2}, & n \text { odd } \\ \frac{1}{2^{n}} \cosh \frac{z}{2}, & n \text { even }\end{cases}
$$

In particular, $g^{(n)}(0)=0$ when n is odd, and $g^{(n)}(0)=\frac{1}{2^{n}}$ when n is even. Moreover

$$
f^{\prime}(z) \cosh \frac{z}{2}=f^{\prime}(z) g(z)=\frac{1}{2} e^{\frac{z}{2}}
$$

Using Leibnitz rule for the derivative of the product of two functions, we get

$$
\frac{d^{n}}{d z^{n}}\left(\frac{1}{2} e^{\frac{z}{2}}\right)=\frac{e^{\frac{z}{2}}}{2^{n+1}}=\sum_{p=0}^{n}\binom{n}{p} g^{(n-p)}(z) f^{(p+1)}(z)
$$

Thus when $z=0$, we get

$$
\sum_{p=0}^{n}\binom{n}{p} \frac{\epsilon_{n-p}}{2^{n-p}} f^{(p+1)}(0)=\frac{1}{2^{n+1}} \text { where } \epsilon_{n}= \begin{cases}0, & n \text { odd } \\ 1, & n \text { even }\end{cases}
$$

and therefore

$$
2^{n+1} f^{(n+1)}(0)=1-\sum_{p=0}^{n-1}\binom{n}{p} 2^{p+1} \epsilon_{n-p} f^{(p+1)}(0)
$$

Case (1): When n is even

$$
2^{n+1} f^{(n+1)}(0)=1-\binom{n}{0} 2 f^{\prime}(0)-\sum_{p=1}^{n-2}\binom{n}{p} 2^{p+1} \epsilon_{n-p} f^{(p+1)}(0)
$$

Note that odd p do not contribute anything to the summation, as $\epsilon_{n-p}=0$ for odd p. Now we can see by induction that $f^{(n)}(0)=0$ whenever n is odd and $n>1 . f^{\prime}(0)=\frac{1}{2}$. $2^{3} f^{(3)}(0)=$ $1-2 \cdot \frac{1}{2}=0$. Assume by induction hypothesis that $f^{(3)}(0)=f^{(5)}(0)=\ldots=f^{(2 m-1)}(0)=0$, then letting $n=2 m$ in the above formula,

$$
2^{2 m+1} f^{(2 m+1)}(0)=-\sum_{p=1}^{m-1}\binom{2 m}{2 p} 2^{2 p+1} f^{(2 p+1)}(0)=0
$$

Case (2): When n is odd: The terms with even p in the formula above do not make any contribution. Thus letting $n=2 m+1$,
$2^{2 m+2} f^{(2 m+2)}(0)=1-\sum_{r=0}^{m-1}\binom{m+1}{2 r+1} 2^{2 r+2} f^{(2 r+2)}(0)=1-\sum_{r=1}^{m}\binom{2 m+1}{2 r-1} 2^{2 r} f^{(2 r)}(0)$
We can now see that $f^{\prime \prime}(0)=\frac{1}{4}, f^{(4)}(0)=-\frac{1}{8}, f^{(6)}(0)=\frac{1}{4}$.
Thus

$$
\begin{aligned}
\log \left(1+e^{z}\right) & =\log 2+\frac{z}{2}+\frac{1}{4} \frac{1}{2!} z^{2}-\frac{1}{8} \frac{1}{4!} z^{4}+\frac{1}{4} \frac{1}{6!} z^{6}+\ldots \\
& =\log 2+\frac{z}{2}+\sum_{n=1}^{\infty} \frac{f^{(2 n)}(0) z^{2 n}}{(2 n)!}
\end{aligned}
$$

where $f^{(2 n)}(0)$ is given by $(*)$ for $n \geq 1$.
Note: We now present an alternative solution, where we use Leibnitz rule for the n-th derivative of the quotient of two functions. It is a good exercise in itself and is usually missing from textbooks.

Theorem: Let $y=\frac{u}{v}$, where u, v are functions with derivatives up to order n. Then

$$
y_{n}=\frac{1}{v^{n+1}}\left|\begin{array}{ccccc}
v & 0 & 0 & \ldots & u \\
v_{1} & v & 0 & \ldots & u_{1} \\
v_{2} & \binom{2}{1} v_{1} & v & \ldots & u_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
v_{n} & \binom{n}{1} v_{n-1} & \binom{n}{2} v_{n-2} & \ldots & u_{n}
\end{array}\right|
$$

For more information log on www.brijrbedu.org.

Here the determinant is $(n+1) \times(n+1)$, and $y_{n}=\frac{d^{n} y}{d x^{n}}$.
Proof: $v y=u$, therefore, by taking successive derivatives using Leibnitz product rule we get

$$
\begin{array}{lll}
v y & = & u \\
v_{1} y+v y_{1} & = & u_{1} \\
v_{2} y+2 v_{1} y_{1}+v y_{2} & = & u_{2} \\
\ldots & & \cdots \\
v_{n} y+\binom{n}{1} v_{n-1} y_{1}+\ldots+v y_{n} & = & u_{n}
\end{array}
$$

These are $n+1$ equations in $n+1$ unknowns y, y_{1}, \ldots, y_{n}, and the determinant of the coefficient matrix is v^{n+1}. Thus by Cramer's rule

$$
y_{n}=\frac{1}{v^{n+1}}\left|\begin{array}{ccccc}
v & 0 & 0 & \ldots & u \\
v_{1} & v & 0 & \ldots & u_{1} \\
v_{2} & \binom{2}{1} v_{1} & v & \ldots & u_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
v_{n} & \binom{n}{1} v_{n-1} & \binom{n}{2} v_{n-2} & \ldots & u_{n}
\end{array}\right|
$$

as required.
Now $f(z)=\log \left(1+e^{z}\right), f(0)=\log 2 . f^{\prime}(z)=\frac{e^{z}}{1+e^{z}}, f^{\prime}(0)=\frac{1}{2}$. Let $u=e^{z}, v=1+e^{z}$. Then $u_{n}(0)=1$ for every n, and $v(0)=2, v_{n}(0)=1$ for $n \geq 1$. Let $F(z)=\frac{u}{v}$, then

$$
\begin{aligned}
& F^{(n)}(0)=f^{(n+1)}(0)=\frac{1}{2^{n+1}}\left|\begin{array}{cccccc}
2 & 0 & 0 & \ldots & 0 & 1 \\
1 & 2 & 0 & \ldots & 0 & 1 \\
1 & 2 & 2 & \ldots & 0 & 1 \\
\ldots & & & \ldots & & \ldots \\
1 & \binom{n}{1} & \binom{n}{2} & \ldots & \binom{n}{n-1} & 1
\end{array}\right| \\
& F^{(1)}(0)=f^{(2)}(0)=\frac{1}{4}\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|=\frac{1}{4} \\
& F^{(2)}(0)=f^{(3)}(0)=\frac{1}{8}\left|\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right|=0 \\
& F^{(3)}(0)=f^{(4)}(0)=\frac{1}{16}\left|\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 \\
1 & 3 & 3 & 1
\end{array}\right|=\frac{1}{16}\left|\begin{array}{cccc}
2 & 0 & 0 & 1 \\
-1 & 2 & 0 & 0 \\
-1 & 2 & 2 & 0 \\
-1 & 3 & 3 & 0
\end{array}\right|=\frac{-2}{16}=-\frac{1}{8} \\
& F^{(4)}(0)=f^{(5)}(0)=\frac{1}{32}\left|\begin{array}{lllll}
2 & 0 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 & 1 \\
1 & 2 & 2 & 0 & 1 \\
1 & 3 & 3 & 2 & 1 \\
1 & 4 & 6 & 4 & 1
\end{array}\right|=0
\end{aligned}
$$

Thus $\log \left(1+e^{z}\right)$ has the expansion as given above.

Question 2(c) Determine the nature of singular points of $\sin \left(\frac{1}{\cos \frac{1}{z}}\right)$ and investigate its behavior at $z=\infty$.

Solution.

1. Let $\zeta=\frac{1}{z}$, and $\phi(\zeta)=f\left(\frac{1}{\zeta}\right)=\sin \left(\frac{1}{\cos \zeta}\right)$. Therefore $\lim _{\zeta \rightarrow 0} \phi(\zeta)=\sin 1$, showing that $\phi(\zeta)$ has a removable singularity at $\zeta=0$. In fact $\phi(\zeta)$ is analytic at $\zeta=0$ if $\phi(0)$ is defined to be $\sin 1$. Note that

$$
\lim _{\zeta \rightarrow 0} \frac{\phi(\zeta)-\phi(0)}{\zeta}=\lim _{\zeta \rightarrow 0} \frac{\sin \left(\frac{1}{\cos \zeta}\right)-\sin 1}{\zeta}=\lim _{\zeta \rightarrow 0} \cos \left(\frac{1}{\cos \zeta}\right) \sec \zeta \tan \zeta=0
$$

Thus $\sin \left(\frac{1}{\cos \frac{1}{z}}\right)$ is regular at ∞.
2. At all zeros of $\cos \frac{1}{z}$ i.e. $z=\frac{2}{(2 n+1) \pi}$ the function $\sin \left(\frac{1}{\cos \frac{1}{z}}\right)$ has essential singularities because $\lim _{x \rightarrow \infty} \sin x$ does not exist - if it did, then given $\epsilon>0$, we would have N such that $x_{1}>N, x_{2}>N \Rightarrow\left|\sin x_{1}-\sin x_{2}\right|<\epsilon$. But for any N we can take $x_{1}=2 n \pi+\frac{\pi}{2}>x_{2}=2 n \pi>N$, then $\left|\sin x_{1}-\sin x_{2}\right|=1 \nless \epsilon$ if $\epsilon<1$.
3. $z=0$ is also an essential singularity of the given function as it is a limit point of essential singularities $z=\frac{2}{(2 n+1) \pi}$.

