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Complex Analysis

Question 1(a) Let f be regular for |z| < R, prove that, if 0 < r < R,

f ′(0) =
1

πr

∫ 2π

0

u(θ) exp(−iθ) dθ

where u(θ) = Re f(reiθ).

Solution. Using Cauchy’s integral formula, it is easily deduced that for any z in the interior
of {CR : |z| = R}, we have

f (t)(z)

t!
=

1

2πi

∫
CR

f(ζ)

(ζ − z)t+1
dζ

In particular, f ′(0) =
1

2πi

∫
CR

f(ζ)

ζ2
dζ.

Putting ζ = Reiθ, dζ = Rieiθ dθ, we get

f ′(0) =
1

2πi

∫ 2π

0

f(Reiθ)

R2e2iθ
Rieiθ dθ =

1

2πR

∫ 2π

0

f(Reiθ)e−iθ dθ (1)

We now consider the integral

1

2πi

∫
CR

f(ζ)ζt−1

(R− z
R
ζ)t+1

dζ

By Cauchy’s residue theorem, the above integral is equal to 2πi(sum of residues of the
integrand within CR). If t ≥ 1, the only possibility of a pole could be at the point ζ = R2

z
,
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but |z| = |z| < R, therefore |R2

z
| > R2

R
= R, so R2

z
lies outside CR and hence the integrand

has no pole inside CR, so

1

2πi

∫
CR

f(ζ)ζt−1

(R− z
R
ζ)t+1

dζ = 0 for t ≥ 1

In particular, taking t = 1, z = 0,

1

2πi

∫
CR

f(ζ)

R2
dζ = 0

Thus we get

0 =
1

2πR

∫ 2π

0

f(Reiθ)eiθ dθ

⇒ 0 =
1

2πR

∫ 2π

0

f(Reiθ)e−iθ dθ (2)

Adding (1), (2), we get

f ′(0) =
1

2πR

∫ 2π

0

(f(Reiθ) + f(Reiθ))e−iθ dθ =
1

πR

∫ 2π

0

u(θ) exp(−iθ) dθ

as required.
Note 1: To get the desired form, we could have considered the integral over {Cr : |z| =

r < R} instead of CR and in that case ζ = reiθ and instead of R, we would have got r i.e.

f ′(0) =
1

πr

∫ 2π

0

u(θ) exp(−iθ) dθ

Note 2: The integral
1

2πi

∫
CR

f(ζ)ζt−1

(R− z
R
ζ)t+1

dζ

plays an important role in questions of this type, and has to be kept in mind.

Question 1(b) Prove that the distance from the origin to the nearest zero of f(z) =
∑∞

n=0 anz
n

is at least
r|ao|

M + |a0|
where r is any number not exceeding the radius of convergence of the

series, and M = M(r) = sup|z|=r |f(z)|.
Solution. By Cauchy’s integral formula,

f(z)− f(0) =
1

2πi

∫
|ζ|=r

f(ζ) dζ

ζ − z
− 1

2πi

∫
|ζ|=r

f(ζ) dζ

ζ

where |z| < r ≤ R, R is the radius of convergence. If f(z) = 0, then

|f(0)| ≤ 1

2π
M

∣∣∣∣∫
|ζ|=r

( 1

ζ − z
− 1

ζ

)
dζ

∣∣∣∣ ≤ M

2π
|z|
∫ 2π

0

∣∣∣∣ rieiθ dθ

reiθ(r − |z|)

∣∣∣∣ =
M |z|
r − |z|

because |ζ−z| ≥ |ζ|−|z| = r−|z| on |ζ| = r. Thus r|f(0)| ≤ |z|(M+|f(0)|)⇒ |z| ≥ |f(0)|r
M+|f(0)| .

Here f(0) = a0, and the result follows.
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Question 1(c) If f = u+ iv is regular throughout the complex plane, and au+ bv − c ≥ 0
for suitable constants a, b, c then f is constant.

Solution. Theorem: If f(z) = u+ iv is entire, and u ≤ 0, then f is constant.
Proof: Consider F (z) = ef(z), then F (z) is also entire. Moreover

|F (z)| = |eu+iv| = |eu| ≤ 1 ∵ u ≤ 0

Thus F (z) is entire and bounded, hence is a constant by Liouville’s theorem. Now F ′(z) =
f ′(z)ef(z) = 0⇒ f ′(z) = 0 because ef(z) 6= 0, so f(z) is constant.

Corollary: If f(z) = u + iv is entire, and u ≥ 0, then f is constant. Proof: Consider
−f(z) = −u− iv, then −u ≤ 0 and −f(z) is constant.

Now consider F (z) = (a− ib)f(z)− c = (au+ bv − c) + i(av − bu). Now F (z) is entire,
and ReF (z) = au+ bv − c ≥ 0, so F (z) is constant, hence f(z) is constant.

Question 2(a) Prove that

∫ ∞
−∞

x4 dx

1 + x8
=

π√
2

sin
π

8
using residue calculus.

Solution.

We take f(z) = z4

1+z8
and the contour C

consisting of γ a semicircle of radius R with
center (0, 0) lying in the upper half plane, and
the line joining (−R, 0) and (R, 0). Finally we
will let R→∞.

γ

(R, 0)(−R, 0) (0, 0)

By Cauchy’s residue theorem

lim
R→∞

∫
C

z4 dz

1 + z8
=

∫ ∞
−∞

x4 dx

1 + x8
+ lim

R→∞

∫
γ

z4 dz

1 + z8

= 2πi(sum of residues at poles of f(z) in the upper half plane)

Now ∣∣∣∣∫
γ

z4 dz

1 + z8

∣∣∣∣ ≤ ∣∣∣∣∫ π

0

R4e4iθRieiθ dθ

R8 − 1

∣∣∣∣ ≤ πR5

R8 − 1

because |z8 + 1| ≥ |z8| − 1 = R8 − 1 on |z| = R. Therefore

lim
R→∞

∫
γ

z4 dz

1 + z8
= 0

f(z) has poles at zeros of z8 + 1 = 0⇒ z8 = −1⇒ z8 = e(2n+1)πi ⇒ z = e
(2n+1)πi

8 , n ∈ Z.

Clearly z = e
πi
8 , e

3πi
8 , e

5πi
8 , e

7πi
8 are the only poles of f(z) in the upper half plane and all these

3
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



are simple poles. The residue at any simple pole z0 is
z40
8z70

= 1
8z30

,

sum of residues at poles of f(z) in the upper half plane

=
1

8

(
e−3πi/8 + e−9πi/8 + e−15πi/8 + e−21πi/8

)
=

1

8

(
e−3πi/8 − e−πi/8 + eπi/8 − e3πi/8

)
=

1

8

(
2i sin

π

8
− 2i sin

3π

8

)
=

i

4

(
sin

π

8
− cos

π

8

)
=

i
√

2

4

(
cos

π

4
sin

π

8
− cos

π

8
sin

π

4

)
= − i

2
√

2
sin

π

8

Thus ∫ ∞
−∞

x4 dx

1 + x8
= 2πi(− i

2
√

2
sin

π

8
) =

π√
2

sin
π

8

as required.

Question 2(b) Derive a series expansion of log(1 + ez) in powers of z.

Solution. Let f(z) = log(1 + ez), then

f ′(z) =
ez

1 + ez
=

1

2
e
z
2

2

e
z
2 + e−

z
2

=
1

2
e
z
2

1

cosh z
2

Let g(z) = cosh z
2
, then

g(n)(z) =

{
1
2n

sinh z
2
, n odd

1
2n

cosh z
2
, n even

In particular, g(n)(0) = 0 when n is odd, and g(n)(0) = 1
2n

when n is even. Moreover

f ′(z) cosh
z

2
= f ′(z)g(z) =

1

2
e
z
2

Using Leibnitz rule for the derivative of the product of two functions, we get

dn

dzn

(1

2
e
z
2

)
=

e
z
2

2n+1
=

n∑
p=0

(
n

p

)
g(n−p)(z)f (p+1)(z)

Thus when z = 0, we get

n∑
p=0

(
n

p

)
εn−p
2n−p

f (p+1)(0) =
1

2n+1
where εn =

{
0, n odd

1, n even
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and therefore

2n+1f (n+1)(0) = 1−
n−1∑
p=0

(
n

p

)
2p+1εn−pf

(p+1)(0)

Case (1) : When n is even

2n+1f (n+1)(0) = 1−
(
n

0

)
2f ′(0)−

n−2∑
p=1

(
n

p

)
2p+1εn−pf

(p+1)(0)

Note that odd p do not contribute anything to the summation, as εn−p = 0 for odd p. Now we
can see by induction that f (n)(0) = 0 whenever n is odd and n > 1. f ′(0) = 1

2
. 23f (3)(0) =

1− 2 · 1
2

= 0. Assume by induction hypothesis that f (3)(0) = f (5)(0) = . . . = f (2m−1)(0) = 0,
then letting n = 2m in the above formula,

22m+1f (2m+1)(0) = −
m−1∑
p=1

(
2m

2p

)
22p+1f (2p+1)(0) = 0

Case (2): When n is odd: The terms with even p in the formula above do not make any
contribution. Thus letting n = 2m+ 1,

22m+2f (2m+2)(0) = 1−
m−1∑
r=0

(
2m+ 1

2r + 1

)
22r+2f (2r+2)(0) = 1−

m∑
r=1

(
2m+ 1

2r − 1

)
22rf (2r)(0) (∗)

We can now see that f ′′(0) = 1
4
, f (4)(0) = −1

8
, f (6)(0) = 1

4
.

Thus

log(1 + ez) = log 2 +
z

2
+

1

4

1

2!
z2 − 1

8

1

4!
z4 +

1

4

1

6!
z6 + . . .

= log 2 +
z

2
+
∞∑
n=1

f (2n)(0)z2n

(2n)!

where f (2n)(0) is given by (∗) for n ≥ 1.

Note: We now present an alternative solution, where we use Leibnitz rule for the n-th
derivative of the quotient of two functions. It is a good exercise in itself and is usually
missing from textbooks.

Theorem: Let y = u
v
, where u, v are functions with derivatives up to order n. Then

yn =
1

vn+1

∣∣∣∣∣∣∣∣∣∣
v 0 0 . . . u
v1 v 0 . . . u1

v2

(
2
1

)
v1 v . . . u2

. . . . . . . . . . . . . . .
vn

(
n
1

)
vn−1

(
n
2

)
vn−2 . . . un

∣∣∣∣∣∣∣∣∣∣
5
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Here the determinant is (n+ 1)× (n+ 1), and yn =
dny

dxn
.

Proof: vy = u, therefore, by taking successive derivatives using Leibnitz product rule
we get

vy = u
v1y + vy1 = u1

v2y + 2v1y1 + vy2 = u2

. . . . . .
vny +

(
n
1

)
vn−1y1 + . . .+ vyn = un

These are n + 1 equations in n + 1 unknowns y, y1, . . . , yn, and the determinant of the
coefficient matrix is vn+1. Thus by Cramer’s rule

yn =
1

vn+1

∣∣∣∣∣∣∣∣∣∣
v 0 0 . . . u
v1 v 0 . . . u1

v2

(
2
1

)
v1 v . . . u2

. . . . . . . . . . . . . . .
vn

(
n
1

)
vn−1

(
n
2

)
vn−2 . . . un

∣∣∣∣∣∣∣∣∣∣
as required.

Now f(z) = log(1 + ez), f(0) = log 2. f ′(z) = ez

1+ez
, f ′(0) = 1

2
. Let u = ez, v = 1 + ez.

Then un(0) = 1 for every n, and v(0) = 2, vn(0) = 1 for n ≥ 1. Let F (z) = u
v
, then

F (n)(0) = f (n+1)(0) =
1

2n+1

∣∣∣∣∣∣∣∣∣∣
2 0 0 . . . 0 1
1 2 0 . . . 0 1
1 2 2 . . . 0 1
. . . . . . . . .
1

(
n
1

) (
n
2

)
. . .

(
n
n−1

)
1

∣∣∣∣∣∣∣∣∣∣
F (1)(0) = f (2)(0) =

1

4

∣∣∣∣2 1
1 1

∣∣∣∣ =
1

4

F (2)(0) = f (3)(0) =
1

8

∣∣∣∣∣∣
2 0 1
1 2 1
1 2 1

∣∣∣∣∣∣ = 0

F (3)(0) = f (4)(0) =
1

16

∣∣∣∣∣∣∣∣
2 0 0 1
1 2 0 1
1 2 2 1
1 3 3 1

∣∣∣∣∣∣∣∣ =
1

16

∣∣∣∣∣∣∣∣
2 0 0 1
−1 2 0 0
−1 2 2 0
−1 3 3 0

∣∣∣∣∣∣∣∣ =
−2

16
= −1

8

F (4)(0) = f (5)(0) =
1

32

∣∣∣∣∣∣∣∣∣∣
2 0 0 0 1
1 2 0 0 1
1 2 2 0 1
1 3 3 2 1
1 4 6 4 1

∣∣∣∣∣∣∣∣∣∣
= 0

Thus log(1 + ez) has the expansion as given above.
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Question 2(c) Determine the nature of singular points of sin
( 1

cos 1
z

)
and investigate its

behavior at z =∞.

Solution.

1. Let ζ = 1
z
, and φ(ζ) = f(1

ζ
) = sin

( 1

cos ζ

)
. Therefore lim

ζ→0
φ(ζ) = sin 1, showing that

φ(ζ) has a removable singularity at ζ = 0. In fact φ(ζ) is analytic at ζ = 0 if φ(0) is
defined to be sin 1. Note that

lim
ζ→0

φ(ζ)− φ(0)

ζ
= lim

ζ→0

sin( 1
cos ζ

)− sin 1

ζ
= lim

ζ→0
cos
( 1

cos ζ

)
sec ζ tan ζ = 0

Thus sin
( 1

cos 1
z

)
is regular at ∞.

2. At all zeros of cos 1
z

i.e. z =
2

(2n+ 1)π
the function sin

( 1

cos 1
z

)
has essential singu-

larities because limx→∞ sinx does not exist — if it did, then given ε > 0, we would
have N such that x1 > N, x2 > N ⇒ | sinx1 − sinx2| < ε. But for any N we can take
x1 = 2nπ + π

2
> x2 = 2nπ > N , then | sinx1 − sinx2| = 1 6< ε if ε < 1.

3. z = 0 is also an essential singularity of the given function as it is a limit point of

essential singularities z =
2

(2n+ 1)π
.
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