UPSC Civil Services Main 1991 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) A function $f(z)$ is defined for all finite values of z by $f(0)=0$ and $f(z)=$ $e^{-z^{-4}}$ everywhere else. Show that the Cauchy-Riemann equations are satisfied at the origin. Show also that $f(z)$ is not analytic at the origin.

Solution. Let $f(z)=u+i v$. By definition

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}, \frac{\partial u}{\partial y}(0,0)=\lim _{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}
$$

Now $u(x, 0)=\operatorname{Re} f(x, 0)=e^{-x^{-4}}, u(0, y)=\operatorname{Re} f(0, y)=e^{-(i y)^{-4}}$, therefore

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{x \rightarrow 0} \frac{e^{-x^{-4}}-0}{x}=\lim _{t \rightarrow \infty} t e^{-t^{4}}=0, \quad \frac{\partial u}{\partial y}(0,0) \lim _{y \rightarrow 0} \frac{e^{-y^{-4}}}{y}=0
$$

(Note that $e^{t^{4}}>t^{4} \Rightarrow t e^{-t^{4}}<\frac{1}{t^{3}} \Rightarrow \lim _{t \rightarrow \infty} t e^{-t^{4}}=0$).
It is obvious that $v(x, 0)=$ Imaginary part of $e^{-x^{-4}}=0$, and $v(0, y)=$ Imaginary part of $e^{-(i y)^{-4}}=0$, and therefore $v_{x}(0,0)=v_{y}(0,0)=0$. Thus $\frac{\partial u}{\partial x}(0,0)=\frac{\partial v}{\partial y}(0,0), \frac{\partial u}{\partial y}(0,0)=$ $-\frac{\partial v}{\partial x}(0,0)$, i.e. the Cauchy-Riemann equations are satisfied at $(0,0)$.

However $f(z)$ is not analytic at $z=0$ because it is not even continuous at $z=0$: if we take $z=r e^{\frac{i \pi}{4}}$, then $z \rightarrow 0 \Leftrightarrow r \rightarrow 0$, but $\lim _{r \rightarrow 0} f\left(r e^{\frac{i \pi}{4}}\right)=\lim _{r \rightarrow 0} e^{-r^{-4} e^{\pi i}}=\lim _{r \rightarrow 0} e^{r^{-4}}=\infty$, so $\lim _{z \rightarrow 0} f(z) \neq f(0)$.

Question 1(b) If $|a| \neq R$, show that

$$
\int_{|z|=R} \frac{|d z|}{|(z-a)(z+a)|}<\frac{2 \pi R}{\left|R^{2}-|a|^{2}\right|}
$$

Solution. On $|z|=R, z=R e^{i \theta}, 0 \leq \theta \leq 2 \pi,|d z|=\left|\operatorname{Rie}^{i \theta} d \theta\right|=R d \theta$. $\left|z^{2}-a^{2}\right| \geq$ $|z|^{2}-|a|^{2}=R^{2}-|a|^{2}$ and $\left|z^{2}-a^{2}\right| \geq|a|^{2}-|z|^{2}=|a|^{2}-R^{2}$, showing that $\left|z^{2}-a^{2}\right| \geq\left|R^{2}-|a|^{2}\right|$, with the strict inequality occurring when $a=|a| e^{i \theta}, z \neq R e^{i \theta}$. Thus

$$
\int_{|z|=R} \frac{|d z|}{|(z-a)(z+a)|}<\int_{0}^{2 \pi} \frac{R d \theta}{\left|R^{2}-|a|^{2}\right|}=\frac{2 \pi R}{\left|R^{2}-|a|^{2}\right|}
$$

as required.
Question 1(c) If

$$
J_{n}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-t \sin \theta) d \theta
$$

show that

$$
e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}=J_{0}(t)+z J_{1}(t)+z^{2} J_{2}(t)+\ldots-\frac{1}{z} J_{1}(t)+\frac{1}{z^{2}} J_{2}(t)-\frac{1}{z^{3}} J_{3}(t)+\ldots
$$

Solution. The function $f(z)=e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}$ is analytic in $0<|z|<\infty$ and therefore by Laurent's theorem - If $f(z)$ is analytic is the annular region $D: R_{1}<\left|z-z_{0}\right|<R_{2}$ and if C is any positively oriented simple closed contour lying within the region D, then for any $z \in D$, we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}, b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}}
$$

or

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \text { where } c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

If we take $f(z)=e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}, R_{1}=0, R_{2}=\infty, z_{0}=0$, then

$$
f(z)=e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}=\sum_{n=-\infty}^{\infty} c_{n} z^{n} \text { where } c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{e^{\frac{t}{2}\left(z-\frac{1}{z}\right)} d z}{z^{n+1}}
$$

We now take C as $|z|=1$. Then $z=e^{i \theta}$ and

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{e^{\frac{t}{2}\left(e^{i \theta}-e^{-i \theta}\right)}}{e^{i(n+1) \theta}} i e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{t i \sin \theta} e^{-i n \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-t \sin \theta) d \theta+\frac{i}{2 \pi} \int_{0}^{2 \pi} \sin (-n \theta+t \sin \theta) d \theta
\end{aligned}
$$

But $\int_{0}^{2 \pi} \sin (-n \theta+t \sin \theta) d \theta=0$, because if we put $\theta=2 \pi-\eta$, then $\int_{0}^{2 \pi} \sin (-n \theta+$ $t \sin \theta) d \theta=\int_{2 \pi}^{0} \sin (-n \eta+t \sin \eta) d \eta$. Therefore

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-t \sin \theta) d \theta=J_{n}(t)
$$

Hence

$$
e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(t) z^{n}
$$

Since on replacing z by $-\frac{1}{z}$, the function $f(z)$ remains unaltered, we get $J_{-n}(t)=J_{n}(t)$ if n is even, and $J_{-n}(t)=-J_{n}(t)$ if n is odd. Thus

$$
e^{\frac{t}{2}\left(z-\frac{1}{z}\right)}=J_{0}(t)+z J_{1}(t)+z^{2} J_{2}(t)+\ldots-\frac{1}{z} J_{1}(t)+\frac{1}{z^{2}} J_{2}(t)-\frac{1}{z^{3}} J_{3}(t)+\ldots
$$

as required.
Question 2(a) Examine the nature of the singularity of e^{z} at ∞.
Solution. e^{z} has an essential singularity at ∞. We examine the nature of the singularity of $e^{\frac{1}{\zeta}}$ at $\zeta=0$. Taking $\zeta=\frac{1}{n}, \lim _{\zeta \rightarrow 0} e^{\frac{1}{\zeta}}=\lim _{n \rightarrow \infty} e^{n}=\infty$.

Taking $\zeta=-\frac{1}{n}, \lim _{\zeta \rightarrow 0} e^{\frac{1}{\zeta}}=\lim _{n \rightarrow \infty} e^{-n}=0$.
Thus $\lim _{\zeta \rightarrow 0} e^{\frac{1}{\zeta}}$ does not exist and therefore $e^{\frac{1}{\zeta}}$ has an essential singularity at $\zeta=0$, proving that e^{z} has an essential singularity at ∞.

Alternately $e^{\frac{1}{\zeta}}=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{\zeta^{n}}$ is the Laurent expansion of $e^{\frac{1}{\zeta}}$ having infinitely many negative powers, showing the same result.

Question 2(b) Evaluate the residues of the function $\frac{z^{3}}{(z-2)(z-3)(z-5)}$ at all its singularities and show that their sum is 0 .

Solution. The given function has simple poles at $z=2,3,5$.
Residue at $z=2$ is $\lim _{z \rightarrow 2} \frac{z^{3}(z-2)}{(z-2)(z-3)(z-5)}=\frac{8}{3}$.
Residue at $z=3$ is $\lim _{z \rightarrow 3} \frac{z^{3}(z-3)}{(z-2)(z-3)(z-5)}=-\frac{27}{2}$.
Residue at $z=5$ is $\lim _{z \rightarrow 5} \frac{z^{3}(z-5)}{(z-2)(z-3)(z-5)}=\frac{125}{6}$.

For more information \log on www.brijrbedu.org.

Residue at ∞ is $=-$ coefficient of $\frac{1}{z}$ in the expansion of $f(z)$ around ∞.

$$
\begin{aligned}
f(z)= & \left(1-\frac{2}{z}\right)^{-1}\left(1-\frac{3}{z}\right)^{-1}\left(1-\frac{5}{z}\right)^{-1} \\
= & \left(1+\frac{2}{z}+\text { Higher powers of } \frac{1}{z}\right)\left(1+\frac{3}{z}+\text { Higher powers of } \frac{1}{z}\right) \\
& \left(1+\frac{5}{z}+\text { Higher powers of } \frac{1}{z}\right) \\
= & 1+\frac{10}{z}+\text { Higher powers of } \frac{1}{z}
\end{aligned}
$$

Thus the residue at ∞ is -10 .
Sum of all residues is $\frac{16-81+125-60}{6}=0$.
Note: The function $f(z)$ has no singularity as such at ∞, but the residue at ∞ is always defined as such. The function is actually analytic at ∞ as $f\left(\frac{1}{z}\right)$ is analytic at $z=0$.

Question 2(c) By integrating along a suitable contour show that

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin a \pi}
$$

where $0<a<1$.

Solution.

Our $f(z)=\frac{e^{a z}}{1+e^{z}}$ and the contour is C, the rectangle $A B C D$ where $A=(-R, 0), B=$ $(R, 0), C=(R, 2 \pi), D=(-R, 2 \pi)$ oriented in the anticlockwise direction. We let $R \rightarrow \infty$ eventually.

$D(-R, 2 \pi)$		$C(R, 2 \pi)$
$x=-R$	$y=2 \pi$	$x=R$
	$y=0$	
$A(-R, 0)$	$(0,0)$	$B(R, 0)$

The function $f(z)$ has only a simple pole at $z=\pi i$ in the strip bounded by $y=0$ and $y=2 \pi$. Residue of $f(z)$ at πi is $\lim _{z \rightarrow \pi i} \frac{z-\pi i}{1+e^{z}} e^{a z}=\frac{e^{a \pi i}}{e^{\pi i}}=-e^{a \pi i}$.

Thus by Cauchy's residue theorem $\lim _{R \rightarrow \infty} \int_{C} \frac{e^{a z} d z}{1+e^{z}}=-2 \pi i e^{\pi i a}$.
We now evaluate the integral along the four lines.

1. On the line $B C$ i.e. $x=R, z=R+i y, d z=i d y$ and

$$
\left|\int_{B C} \frac{e^{a z} d z}{1+e^{z}}\right|=\left|\int_{0}^{2 \pi} \frac{e^{a(R+i y)} i d y}{1+e^{R+i y}}\right| \leq \int_{0}^{2 \pi} \frac{e^{a R} d y}{e^{R}-1}=\frac{2 \pi e^{a R}}{e^{R}-1}
$$

because $\left|e^{z}+1\right| \geq\left|e^{z}\right|-1=\left|e^{R+i y}\right|-1=e^{R}-1$ on $B C$. Since $\lim _{R \rightarrow \infty} \frac{e^{a R}}{e^{R}-1}=0$ as $0<a<1$ using L'Hospital's Rule, it follows that $\lim _{R \rightarrow \infty} \int_{B C} \frac{e^{a z} d z}{1+e^{z}}=0$.
2. On the line $D A$ i.e. $\quad x=-R, z=-R+i y, d z=i d y$. Since $\left|e^{z}+1\right| \geq 1-\left|e^{z}\right|=$ $1-\left|e^{-R+i y}\right|=1-e^{-R}$

$$
\left|\int_{D A} \frac{e^{a z} d z}{1+e^{z}}\right| \leq \frac{2 \pi e^{-a R}}{1-e^{-R}}(\rightarrow 0 \text { as } R \rightarrow \infty)
$$

thus $\lim _{R \rightarrow \infty} \int_{D A} \frac{e^{a z} d z}{1+e^{z}}=0$.
3. On the line $A B, z=x$, so

$$
\lim _{R \rightarrow \infty} \int_{A B} \frac{e^{a z} d z}{1+e^{z}}=\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

4. On the line $C D, z=x+2 \pi i$, so

$$
\lim _{R \rightarrow \infty} \int_{C D} \frac{e^{a z} d z}{1+e^{z}}=\int_{\infty}^{-\infty} \frac{e^{a(x+2 \pi i)}}{1+e^{x+2 \pi i}} d x=-e^{2 \pi i a} \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

Thus

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{e^{a z} d z}{1+e^{z}}=\left(1-e^{2 \pi i a}\right) \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=-2 \pi i e^{\pi i a}
$$

so

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{-2 \pi i e^{\pi i a}}{1-e^{2 \pi i a}}=\frac{-2 \pi i}{e^{-\pi i a}-e^{\pi i a}}=\frac{\pi}{\sin a \pi}
$$

as required.

