UPSC Civil Services Main 1992 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) If $u=e^{-x}(x \sin y-y \cos y)$, find v such that $f(z)=u+i v$ is analytic. Also find $f(z)$ explicitly as a function of z.

Solution. See 1993, question 2(b).
Question 1(b) Let $f(z)$ be analytic inside and on the circle C defined by $|z|=R$ and let $r e^{i \theta}$ be any point inside C. Prove that

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(R e^{i \phi}\right)}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi
$$

Solution. By Cauchy's integral formula

$$
\begin{equation*}
f(z)=f\left(r e^{i \theta}\right)=\frac{1}{2 \pi i} \int_{C_{R}:|\zeta|=r} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{1}
\end{equation*}
$$

We note that the function $\frac{f(\zeta)}{\zeta-\frac{R^{2}}{\bar{z}}}$ has no singularity within and on C_{R}, because $f(\zeta)$ is analytic within and on C_{R} and $\left(\zeta-\frac{R^{2}}{\bar{z}}\right)^{-1}$ is also analytic within and on C_{R} as $\frac{R^{2}}{\bar{z}}$ lies outside C_{R} and therefore $\zeta-\frac{R^{2}}{\bar{z}} \neq 0$ (Note that $R^{2}=R \cdot R>R|\bar{z}|$, because $|z|=r<R$, thus $\left|\frac{R^{2}}{\bar{z}}\right|>R$. Thus by Cauchy's theorem

$$
\begin{equation*}
0=\int_{C_{R}} \frac{f(\zeta)}{\zeta-\frac{R^{2}}{\bar{z}}} d \zeta \tag{2}
\end{equation*}
$$

Using (1), (2) we get

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{|\zeta|=r} f(\zeta)\left[\frac{1}{\zeta-z}-\frac{1}{\zeta-\frac{R^{2}}{\bar{z}}}\right] d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=r} f(\zeta)\left[\frac{z-\frac{R^{2}}{\bar{z}}}{(\zeta-z)\left(\zeta-\frac{R^{2}}{\bar{z}}\right)}\right] d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=r} f(\zeta)\left[\frac{z \bar{z}-R^{2}}{(\zeta-z)\left(\zeta \bar{z}-R^{2}\right)}\right] d \zeta \\
\Rightarrow f\left(r e^{i \theta}\right) & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} f\left(R e^{i \phi}\right)\left[\frac{r^{2}-R^{2}}{\left(R e^{i \phi}-r e^{i \theta}\right)\left(r R e^{i(\phi-\theta)}-R^{2}\right)}\right] R e^{i \phi} i d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \phi}\right)\left[\frac{r^{2}-R^{2}}{\left(R-r e^{i(\theta-\phi)}\right)\left(r e^{i(\phi-\theta)}-R\right)}\right] d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \phi}\right)\left[\frac{r^{2}-R^{2}}{-R^{2}-r^{2}+r R\left(e^{i(\theta-\phi)}+e^{i(\phi-\theta)}\right)}\right] d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \phi}\right)\left[\frac{R^{2}-r^{2}}{R^{2}+r^{2}+2 r R \cos (\theta-\phi)}\right] d \phi
\end{aligned}
$$

as required.
Question 1(c) Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|=2$.

Solution. See 2006 question 2(b).
Question 2(a) Find the region of convergence of the series whose n-th term is $\frac{(-1)^{n-1} z^{2 n-1}}{(2 n-1)!}$.
Solution. Clearly

$$
\left|\frac{\text { Coefficient of the }(n+1) \text {-th term }}{\text { Coefficient of the } n \text {-th term }}\right|=\frac{(2 n-1)!}{(2 n+1)!} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus $\lim _{n \rightarrow \infty} \mid$ Coefficient of the n-th term $\left.\right|^{\frac{1}{n}}=0$. So the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{2 n-1}}{(2 n-1)!}$ is ∞, i.e. the region of convergence is the entire complex plane.

Question 2(b) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in a Laurent series valid for $(i)|z|>3$, (ii) $1<$ $|z|<3,($ iii $)|z|<1$.

Solution. (i) $|z|>3$.

$$
f(z)=\frac{1}{2}\left(\frac{1}{z+1}-\frac{1}{z+3}\right)=\frac{1}{2 z}\left[\left(1+\frac{1}{z}\right)^{-1}-\left(1+\frac{3}{z}\right)^{-1}\right]
$$

Since $\left|\frac{1}{z}\right|<\frac{1}{3},\left|\frac{3}{z}\right|<1$, we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 z}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n}}-\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{z^{n}}\right] \\
& =\frac{1}{2 z} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(1-3^{n}\right)}{z^{n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(1-3^{n}\right)}{2} \frac{1}{z^{n+1}}
\end{aligned}
$$

(ii) $1<|z|<3$.

$$
f(z)=\frac{1}{2 z}\left(1+\frac{1}{z}\right)^{-1}-\frac{1}{2} \frac{1}{3}\left(1+\frac{z}{3}\right)^{-1}
$$

Since $\left|\frac{1}{z}\right|<1,\left|\frac{z}{3}\right|<1$, we get

$$
\begin{aligned}
f(z) & =\frac{1}{2 z} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n}}-\frac{1}{6} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{3^{n}} \\
& =\frac{1}{2}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1} z^{n}}{3^{n+1}}\right]
\end{aligned}
$$

(iii) $|z|<1$.

$$
f(z)=\frac{1}{2}(1+z)^{-1}-\frac{1}{2} \frac{1}{3}\left(1+\frac{z}{3}\right)^{-1}
$$

As $|z|<1,\left|\frac{z}{3}\right|<1$, we get

$$
\begin{aligned}
f(z) & =\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} z^{n}-\frac{1}{6} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{3^{n}} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(1-\frac{1}{3^{n+1}}\right) z^{n}
\end{aligned}
$$

These are the Laurent or Taylor series in the required three cases.
Question 2(c) By integrating along a suitable contour evaluate $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+1} d x$
Solution. See 1995, question 2(a).

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

