UPSC Civil Services Main 1993 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) In the finite plane, show that the function $f(z)=\sec \frac{1}{z}$ has infinitely many isolated singularities in a finite interval which includes zero.

Solution. We know that $\cos \frac{1}{z}=0$ if and only if $\frac{1}{z}=(2 n+1) \frac{\pi}{2}, n \in \mathbb{Z}$, or $z=\frac{2}{(2 n+1) \pi}$. Moreover all these zeros are simple zeros of $\cos \frac{1}{z}$ and are isolated singular points. Thus the given function has infinitely many simple poles at the points $z=\frac{2}{(2 n+1) \pi}$. Since $\frac{2}{(2 n+1) \pi} \rightarrow 0$ as $n \rightarrow \infty$, it follows that any finite interval containing 0 will have all but finitely many points of the type $z=\frac{2}{(2 n+1) \pi}$. Thus any finite interval containing 0 will have infinitely many isolated singularities (simple poles) of $\sec \frac{1}{z}$.

Question 1(b) Find the orthogonal trajectories of the family of curves in the xy-plane defined by $e^{-x}(x \sin y-y \cos y)=\alpha$, where α is a real constant.

Solution. If $f(z)=u+i v$ is an analytic function, then $u=$ constant, $v=$ constant represent families of curves which are orthogonal to each other, because of the Cauchy-Riemann equations:

$$
\left(-\frac{\partial u}{\partial x} / \frac{\partial u}{\partial y}\right) \times\left(-\frac{\partial v}{\partial x} / \frac{\partial v}{\partial y}\right)=-1
$$

i.e. tangents to the curve $u=c$ and $v=c^{\prime}$ respectively cut each other at right angles. Thus given $u=e^{x}(x \sin y-y \cos y)$ we have to find v so that $f=u+i v$ is analytic.

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

We use Milne Thompson's method. We know

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)-i \frac{\partial u}{\partial y}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

is an identity.

$$
f^{\prime}(z)=e^{-x} \sin y-e^{-x}(x \sin y-y \cos y)-i e^{-x}(x \cos y-\cos y+y \sin y)
$$

Putting $z=\bar{z} \Rightarrow x=z, y=0 \Rightarrow f^{\prime}(z)=-i e^{-z}(z-1)$, or $f(z)=-i \int e^{-z}(z-1) d z=i z e^{-z}$. Thus

$$
\begin{aligned}
u+i v & =i(x+i y) e^{-x}(\cos y-i \sin y) \\
& =e^{-x}(x \sin y-y \cos y)+i e^{-x}(x \cos y+y \sin y)
\end{aligned}
$$

Thus $v=e^{-x}(x \cos y+y \sin y)=\beta$ is the required family of curves.
Question 1(c) Prove by applying Cauchy's integral formula or otherwise that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)} 2 \pi
$$

where $n=1,2,3, \ldots$.
Solution. We put $z=e^{i \theta}$ so that $d z=i e^{i \theta} d \theta$ and the integral is along the curve $|z|=1$. We get

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\int_{|z|=1} \frac{\left(z+\frac{1}{z}\right)^{2 n}}{2^{2 n}} \frac{d z}{i z}=\frac{1}{i} \int_{|z|=1} \frac{\left(1+z^{2}\right)^{2 n}}{2^{2 n} z^{2 n+1}} d z
$$

Thus by Cauchy's residue theorem $\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi i \frac{1}{2^{2 n} i}$ (sum of residues at poles of $\frac{\left(1+z^{2}\right)^{2 n}}{z^{2 n+1}}$ inside $|z|=1$). Clearly $z=0$ is the only pole of the integrand in $|z|=1$, and it is of order $2 n+1$.

Residue of $\frac{\left(1+z^{2}\right)^{2 n}}{z^{2 n+1}}$ at $z=0$ is the coefficient of $\frac{1}{z}$ in the Laurent expansion.
Now $\left(1+z^{2}\right)^{2 n}=$ sum of powers of z with exponent $<2 n+\binom{2 n}{n} z^{2 n}+$ sum of powers with exponent $>2 n$. Thus coefficient of $\frac{1}{z}$ in the Laurent expansion of $\frac{\left(1+z^{2}\right)^{2 n}}{z^{2 n+1}}$ around $z=0$ is $\binom{2 n}{n}$. Thus

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi \frac{1}{2^{2 n}} \frac{2 n!}{n!n!}
$$

Now $2^{n} n!=2 n(2 n-2)(2 n-4) \ldots \cdot 6 \cdot 4 \cdot 2$, so $\frac{2 n!}{2^{n} n!}=(2 n-1)(2 n-3)(2 n-5) \ldots \cdot 5 \cdot 3 \cdot 1$. Hence

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)} 2 \pi
$$

as required.

Question 2(a) If C is the curve $y=x^{3}-3 x^{2}+4 x-1$ joining the points $(1,1)$ and $(2,3)$, find the value of $\int_{C}\left(12 z^{2}-4 i z\right) d z$.

Solution. If C_{1} is any curve joining $(1,1)$ and $(2,3)$, then C and C_{1} form a closed contour. Since $12 z^{2}-4 i z$ is analytic, by Cauchy's theorem

$$
-\int_{C}\left(12 z^{2}-4 i z\right) d z+\int_{C_{1}}\left(12 z^{2}-4 i z\right) d z=0
$$

so the integral is independent of the path between $(1,1)$ and $(2,3)$. Thus

$$
\begin{aligned}
\int_{C}\left(12 z^{2}-4 i z\right) d z & =\left[4 z^{3}-2 i z^{2}\right]_{1+i}^{2+3 i} \\
& =4\left[(2+3 i)^{3}-(1+i)^{3}\right]-2 i\left[(2+3 i)^{2}-(1+i)^{2}\right] \\
& =4[8+36 i-54-27 i-1-3 i+3+i]-2 i[4+12 i-9-1-2 i+1] \\
& =4[-44+7 i]-2 i[-5+10 i]=-156+38 i
\end{aligned}
$$

Note that calculating \int_{C} by $\int_{C} u d x+v d y$ would be more work.
Question 2(b) Prove that the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}$ converges absolutely for $|z| \leq 1$.
Solution. Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$. Now $s_{n}=\sum_{r=1}^{n}\left(\frac{1}{r}-\right.$ $\left.\frac{1}{r+1}\right)=1-\frac{1}{n+1}$. Thus $s_{n} \rightarrow 1$ as $n \rightarrow \infty$, so $\sum_{n=1}^{\infty} a_{n}$ is convergent. Now $\left|\frac{z^{n}}{n(n+1)}\right| \leq a_{n}$ for $|z| \leq 1$, therefore by Weierstrass M-test, the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}$ converges absolutely (in fact uniformly) in the region $|z| \leq 1$.

Question 2(c) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$ by choosing an appropriate contour.

Solution.

We take $f(z)=\frac{1}{1+z^{6}}$ and the contour γ consisting of Γ a semicircle of radius R with center $(0,0)$ lying in the upper half plane, and the line joining $(-R, 0)$ and $(R, 0)$.

By Cauchy's residue theorem $\int_{\gamma} \frac{d z}{1+z^{6}}=2 \pi i$ (sum of residues at poles of $f(z)$ in the upper half plane).

Clearly $\frac{1}{1+z^{6}}$ has simple poles at $z=e^{\frac{\pi i}{6}}, z=e^{\frac{\pi i}{2}}$ and $z=e^{\frac{5 \pi i}{6}}$ inside the contour.
Residue at $z=\zeta$ is $\frac{1}{6 \zeta^{5}}$.

$$
\begin{aligned}
\text { Sum of residues } & =\frac{1}{6}\left[\frac{1}{e^{\frac{5 \pi i}{6}}}+\frac{1}{e^{\frac{15 \pi i}{6}}}+\frac{1}{e^{\frac{25 \pi i}{6}}}\right] \\
& =\frac{1}{6}\left[\cos \frac{5 \pi}{6}-i \sin \frac{5 \pi}{6}-i+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right]=\frac{-2 i}{6}
\end{aligned}
$$

as $\cos \frac{5 \pi}{6}=-\cos \frac{\pi}{6}, \sin \frac{5 \pi}{6}=\sin \frac{\pi}{6}=\frac{1}{2}$. Thus $\lim _{R \rightarrow \infty} \int_{\gamma} \frac{d z}{1+z^{6}}=2 \pi i \frac{-i}{3}=\frac{2 \pi}{3}$.
Now

$$
\left|\int_{\Gamma} \frac{d z}{1+z^{6}}\right| \leq \int_{0}^{\pi} \frac{R}{R^{6}-1} d \theta=\frac{\pi R}{R^{6}-1}
$$

on putting $z=R e^{i \theta}$ and using $\left|z^{6}+1\right| \geq R^{6}-1$ on Γ.
Thus $\int_{\Gamma} \frac{d z}{1+z^{6}} \rightarrow 0$ as $R \rightarrow \infty$. Consequently,

$$
\lim _{R \rightarrow \infty} \int_{\gamma} \frac{d z}{1+z^{6}}=\int_{-\infty}^{\infty} \frac{d x}{1+x^{6}}=\frac{2 \pi}{3}
$$

and hence $\int_{0}^{\infty} \frac{d x}{1+x^{6}}=\frac{\pi}{3}$.

