UPSC Civil Services Main 1994 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Suppose that z is the position vector of a particle moving on the ellipse $C: z = a \cos \omega t + ib \sin \omega t$ where ω, a, b are positive constants, a > b and t is time. Determine where

- 1. the velocity has the greatest magnitude.
- 2. the acceleration has the least magnitude.

Solution. See 1996, question 1(a).

Question 1(b) How many zeroes does the polynomial $p(z) = z^4 + 2z^3 + 3z + 4$ possess (i) in the first quadrant, (ii) in the fourth quadrant.

Solution.

- 1. p(-1) = 0. p(-2) = -2 < 0, p(-3) = 22 > 0, therefore the intermediate value theorem shows that there exists x, -3 < x < -2 such that p(x) = 0. Thus we have determined that to zeros of p(z) lie on the negative real axis, and since p is a polynomial of degree 4 and hence has 4 zeros, we are left with the task of locating the the remaining two zeros.
- 2. p(z) has no zeros on the positive real axis because p(x) > 0 when $x \ge 0$.
- 3. p(z) has has no zero on the imaginary axis because $p(iy) = y^4 + 4 2iy^3 + 3iy = 0 \Rightarrow y^4 + 4 = 0, 2y^3 3y = 0$, but $y^4 + 4 = 0$ has no real zeros, so $p(iy) \neq 0$.

We now consider the contour OABOwhere OA is straight line joining (0,0) and (R,0), AB is the arc of the circle $x^2 + y^2 = R^2$ in the first quadrant, and BO is the line joining (0, R) to (0, 0).

By the Argument Principle, the number of zeros of p(z) in the first quadrant $= \frac{1}{2\pi} \times$ (the change in the argument of p(z) when z moves along the contour *OABO* oriented anticlockwise as $R \to \infty$).

Change in the argument along OA: On OA, $p(z) = x^4 + 2x^3 + 3x + 4 > 0 \Rightarrow \arg p(z) = 0$ for every x on OA. Therefore as z moves from O to A, the change in the argument of p(z)i.e. $\Delta_{OA} \arg p(z) = 0$.

Change in the argument along *BO*: On *BO*, z = iy and $p(z) = y^4 + 4 + i(3y - 2y^3)$. Therefore $\arg p(z) = \tan^{-1}\left(\frac{3y - 2y^3}{y^4 + 4}\right)$.

$$\Delta_{BO} \arg p(z) = \tan^{-1} \left(\frac{3y - 2y^3}{y^4 + 4} \right) \Big]_{\infty}^0 = 0 - 0 = 0$$

Change in argument along AB: On arc AB, $z = Re^{i\theta}, 0 \le \theta \le \frac{\pi}{2}$, so that

$$p(z) = R^4 e^{4i\theta} + 2R^3 e^{3i\theta} + 3Re^{i\theta} + 4 = R^4 e^{4i\theta} \left[1 + \frac{2}{Re^{i\theta}} + \frac{3}{R^3 e^{3i\theta}} + \frac{4}{R^4 e^{4i\theta}} \right] \longrightarrow R^4 e^{4i\theta}$$

as $R \to \infty$. Thus $\Delta_{AB} \arg p(z) = 4\theta \Big]_0^{\frac{\pi}{2}} = 2\pi .^1$

Hence $\Delta_{OABO} \arg p(z) = 2\pi$ as $R \to \infty$, so p(z) has exactly one zero in the first quadrant. Since p(z) is a polynomial with real coefficients, it follows that if ζ is a zero of p(z) and it lies in the first quadrant, then $\overline{\zeta}$ is also a zero of p(z) and it lies in the fourth quadrant.

Thus p(z) has one zero in each of the first and the fourth quadrants.

Question 1(c) Test for uniform convergence in the region $|z| \leq 1$ the series

$$\sum_{n=1}^{\infty} \frac{\cos nz}{n^3}$$

Solution. By definition

$$\cos nz = \frac{e^{inz} + e^{-inz}}{2} = \frac{e^{-ny}e^{inx} + e^{ny}e^{-inx}}{2}$$

¹Alternately, $p(z) = z^4 \left(1 + \frac{2}{z} + \frac{3}{z^3} + \frac{4}{z^4} \right) = z^4 (1+w)$ where $w = \frac{2}{z} + \frac{3}{z^3} + \frac{4}{z^4}$. Clearly $w \to 0$ as $R \to \infty$. Therefore $|1+w-1| < \epsilon$ for |z| large. This means 1+w remains inside a circle of radius 1 as z moves along AB and $R \to \infty$. Therefore $\Delta_{AB} \arg(1+w) = 0$ and $\Delta_{AB} p(z) = \Delta_{AB} z^4 + \Delta_{AB} (1+w) = 4\Delta_{AB} z = 4 \cdot \frac{\pi}{2} = 2\pi$.

and therefore

$$\sum_{n=1}^{\infty} \frac{\cos nz}{n^3} = \sum_{n=1}^{\infty} \frac{e^{-ny}e^{inx}}{2n^3} + \sum_{n=1}^{\infty} \frac{e^{ny}e^{-inx}}{2n^3}$$

Case 1: y > 0.

$$\sum_{n=1}^{\infty} \left| \frac{e^{-ny} e^{inx}}{2n^3} \right| \le \sum_{n=1}^{\infty} \frac{1}{2n^3}$$

showing that the first term is absolutely convergent.

But the second term is not convergent, because its *n*-th term $\left|\frac{e^{ny}e^{-inx}}{2n^3}\right| \not\to 0$ as $n \to \infty$ $- \text{ in fact } \left| \frac{e^{ny} e^{-inx}}{2n^3} \right| \to \infty \text{ as } n \to \infty \text{ when } y > 0.$ Therefore $\sum_{n=1}^{\infty} \frac{\cos nz}{n^3}$ is not even convergent when y > 0. Case 2: $y \stackrel{n=1}{<} 0$. This case is entirely analogous to the above case — the first term $\sum_{n=1}^{\infty} \frac{e^{-ny} e^{inx}}{2n^3}$ is not convergent, so $\sum_{n=1}^{\infty} \frac{\cos nz}{n^3}$ is not convergent. Case 3: y = 0. $\sum_{n=1}^{\infty} \frac{\cos nx}{n^3}$ is uniformly and absolutely convergent, because of Weierstrass

M-test, which states that if $\sum_{n=1}^{\infty} f_n(z)$ is a series and there exist positive constants M_n such that $|f_n(z)| < M_n$ for every $z \in \Omega$ and $\sum_n M_n$ is convergent, then $\sum_{n=1}^{\infty} f_n(z)$ is absolutely and uniformly convergent in Ω . Here $M_n = \frac{1}{n^3}$ for all x.

Thus the given series converges uniformly only on the real axis in $|z| \leq 1$.

Question 2(a) Find the Laurent series for

1.
$$\frac{e^{2z}}{(z-1)^3}$$
 about $z = 1$.
2. $\frac{1}{z^2(z-3)^2}$ about $z = 3$.

Solution.

1. The function e^{2z} is analytic everywhere in the complex plane. The Taylor series of e^{2z} with center z = 1 is given by

$$e^{2z} = \sum_{n=0}^{\infty} \frac{\frac{d^n e^{2z}}{dz^n}}{n!} \operatorname{at} z = 1$$

 $(z-1)^n = \sum_{n=0}^{\infty} \frac{2^n e^2}{n!} (z-1)^n$

because
$$\frac{d^n e^{2z}}{dz^n} = 2^n e^{2z}$$
. Thus

$$\frac{e^{2z}}{(z-1)^3} = \frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{4e^2}{2!(z-1)} + \sum_{n=3}^{\infty} \frac{2^n e^2}{n!} (z-1)^{n-3}$$

$$= \frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{4e^2}{2!(z-1)} + \sum_{n=0}^{\infty} \frac{2^{n+3}e^2}{(n+3)!} (z-1)^n$$

which is the required Laurent series of $\frac{e^{2z}}{(z-1)^3}$ with center z = 1. It is valid in the ring $1 < |z| < \infty$.

2. Let $f(z) = \frac{1}{z^2}$ then

$$f'(z) = -\frac{2}{z^3}, \ f''(z) = \frac{(-2)(-3)}{z^4}, \dots, f^{(n)}(z) = \frac{(-2)(-3)\dots(-n-1)}{z^{n+2}}$$

and therefore

$$f(3) = \frac{1}{3^2}, f'(3) = -\frac{2}{3^3}, \dots, f^{(n)}(3) = \frac{(-1)^n (n+1)!}{3^{n+2}}$$

Thus the Taylor series of f(z) with center z = 3 is given by

$$\frac{1}{z^2} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)!}{3^{n+2} n!} (z-3)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{3^{n+2}} (z-3)^n$$

Thus

$$\frac{1}{z^2(z-3)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{3^{n+2}} (z-3)^{n-2} = \frac{1}{3^2(z-3)^2} - \frac{2}{3^3(z-3)} + \sum_{m=0}^{\infty} \frac{(-1)^m (m+3)}{3^{m+4}} (z-3)^m + \frac{1}{3^m} \sum_{n=0}^{\infty} \frac{(-1)^n (m+3)}{3^m} (z-3)^$$

is the required Laurent series of $\frac{1}{z^2(z-3)^2}$ with center z = 3 valid in 0 < |z| < 3.

Question 2(b) Find the residues of $f(z) = e^z \csc^2 z$ at all its poles in the finite plane.

Solution. The poles are at zeros of $\sin^2 z$, and $\sin^2 z = 0$ iff $z = n\pi, n \in \mathbb{Z}$, the set of integers. All these poles are double poles.

Residue at
$$z = n\pi$$
 of $f(z)$ is $\frac{1}{1!} \frac{d}{dz} \left(\frac{(z - n\pi)^2 e^z}{\sin^2 z} \right)_{z=n\pi}$. Now

$$\frac{d}{dz} \left(\frac{(z - n\pi)^2 e^z}{\sin^2 z} \right) = \frac{\sin^2 z [(z - n\pi)^2 e^z + 2(z - n\pi) e^z] - (z - n\pi)^2 e^z 2 \sin z \cos z}{\sin^4 z}$$

$$= \frac{e^z (z - n\pi)}{\sin^3 z} ((z - n\pi) \sin z + 2 \sin z - 2(z - n\pi) \cos z)$$

4

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

Using
$$\lim_{z \to n\pi} \frac{z - n\pi}{\sin z} = \frac{1}{\cos n\pi} = (-1)^n$$
, we get
 $\frac{d}{dz} \left(\frac{(z - n\pi)^2 e^z}{\sin^2 z} \right)_{z=n\pi} = e^{n\pi} \lim_{z \to n\pi} \frac{(z - n\pi)}{\sin^3 z} ((z - n\pi) \sin z + 2 \sin z - 2(z - n\pi) \cos z))$

$$= e^{n\pi} (-1)^n \lim_{z \to n\pi} \frac{(z - n\pi)(\sin z - 2 \cos z) + 2 \sin z}{\sin^2 z}$$

$$= e^{n\pi} (-1)^n \lim_{z \to n\pi} \frac{\sin z - 2 \cos z + (z - n\pi)(\cos z + 2 \sin z) + 2 \cos z}{2 \sin z \cos z}$$

$$= e^{n\pi} \lim_{z \to n\pi} \frac{\sin z + (z - n\pi)(\cos z + 2 \sin z)}{2 \sin z}$$

$$= e^{n\pi} \lim_{z \to n\pi} \frac{\cos z + \cos z + 2 \sin z + (z - n\pi)(-\sin z + 2 \cos z)}{2 \cos z}$$

Thus the residue at $z = n\pi$ of $e^z \csc^2 z$ is $e^{n\pi}$.

Question 2(c) By means of contour integration evaluate $\int_0^\infty \frac{(\log_e u)^2}{u^2 + 1} du$.

Solution.

We take $f(z) = \frac{(\log z)^2}{z^2+1}$ and the contour C consisting of the line joining (-R, 0) to (-r, 0), the semicircle γ of radius r with center (0, 0), the line joining (r, 0) to (R, 0) and Γ a semicircle of radius R with center (0, 0). The contour lies in the upper half plane and is oriented anticlockwise. We have avoided the branch point z = 0 of the multiple valued function $\log z$.

(Eventually we shall let $R \to \infty, r \to 0$).

(1) On
$$\Gamma$$
, $z = Re^{i\theta}$ and $|1 + z^2| \ge |z|^2 - 1 = R^2 - 1$. Thus

$$\begin{aligned} \left| \int_{\Gamma} f(z) \, dz \right| &\leq \left| \int_{0}^{\pi} \frac{\left(\log(Re^{i\theta}) \right)^{2}}{R^{2} - 1} i R e^{i\theta} \, d\theta \right| \\ &\leq \int_{0}^{\pi} \frac{|\log R + i\theta|^{2}}{R^{2} - 1} R \, d\theta \\ &= \frac{R}{R^{2} - 1} \int_{0}^{\pi} ((\log R)^{2} + \theta^{2}) \, d\theta = \frac{R}{R^{2} - 1} \Big(\pi (\log R)^{2} + \frac{\pi^{3}}{3} \Big) \end{aligned}$$

But $\frac{R}{R^2-1}\left(\pi(\log R)^2 + \frac{\pi^3}{3}\right) \to 0$ as $R \to \infty$, therefore

$$\lim_{R \to \infty} \int_{\Gamma} f(z) \, dz = 0$$

(2) On
$$\gamma$$
, $z = re^{i\theta}$, $|z|^2 + 1 \ge 1 - |z|^2 = 1 - r^2$. Thus
$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\pi}^{0} \frac{(\log r)^2 + \theta^2}{1 - r^2} r \, d\theta = \frac{r}{1 - r^2} \Big(\pi (\log r)^2 + \frac{\pi^3}{3} \Big)^2 d\theta$$

But the right side $\rightarrow 0$ as $r \rightarrow 0$, it follows that $\lim_{r \rightarrow 0} \int_{\gamma} f(z) dz = 0$.

(3) f(z) has a simple pole at z = i in the the upper half plane (inside C) and the residue at z = i of f(z) is $\frac{(\log i)^2}{2i} = \frac{1}{2i} \left(\frac{\pi i}{2}\right)^2 = \frac{\pi^2 i}{8}$. Thus

$$\lim_{R \to \infty, r \to 0} \int_C f(z) \, dz = \lim_{R \to \infty, r \to 0} \int_r^R f(x) \, dx + \int_R^r f(xe^{i\pi}) \, dxe^{i\pi} = 2\pi i \frac{\pi^2 i}{8}$$

because on the line CD, z = x, and on the line AB, $z = xe^{i\pi}$. Hence

$$-\int_{\infty}^{0} \frac{(\log(xe^{i\pi}))^2}{1+x^2e^{2\pi i}} \, dx + \int_{0}^{\infty} \frac{(\log x)^2}{1+x^2} \, dx = -\frac{\pi^3}{4}$$

Now $(\log(xe^{i\pi}))^2 = (\log x)^2 - \pi^2 + 2i\pi \log x$, so

$$2\int_0^\infty \frac{(\log x)^2}{1+x^2} \, dx - \pi^2 \int_0^\infty \frac{dx}{1+x^2} + 2i\pi \int_0^\infty \frac{\log x}{1+x^2} \, dx = -\frac{\pi^3}{4}$$

Equating real parts, and noting that $\int_0^\infty \frac{dx}{1+x^2} = \tan^{-1}x\Big]_0^\infty = \frac{\pi}{2}$, we get

$$2\int_0^\infty \frac{(\log x)^2}{1+x^2} \, dx = \frac{\pi^3}{2} - \frac{\pi^3}{4} = \frac{\pi^3}{4}$$

so that $\int_0^\infty \frac{(\log x)^2}{1+x^2} \, dx = \frac{\pi^3}{8}.$

Note that by equating imaginary parts, we get $\int_0^\infty \frac{\log x}{1+x^2} dx = 0.$