UPSC Civil Services Main 1994 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Suppose that z is the position vector of a particle moving on the ellipse $C: z=a \cos \omega t+i b \sin \omega t$ where ω, a, b are positive constants, $a>b$ and t is time. Determine where

1. the velocity has the greatest magnitude.
2. the acceleration has the least magnitude.

Solution. See 1996, question 1(a).
Question 1(b) How many zeroes does the polynomial $p(z)=z^{4}+2 z^{3}+3 z+4$ possess (i) in the first quadrant, (ii) in the fourth quadrant.

Solution.

1. $p(-1)=0 . p(-2)=-2<0, p(-3)=22>0$, therefore the intermediate value theorem shows that there exists $x,-3<x<-2$ such that $p(x)=0$. Thus we have determined that to zeros of $p(z)$ lie on the negative real axis, and since p is a polynomial of degree 4 and hence has 4 zeros, we are left with the task of locating the the remaining two zeros.
2. $p(z)$ has no zeros on the positive real axis because $p(x)>0$ when $x \geq 0$.
3. $p(z)$ has has no zero on the imaginary axis because $p(i y)=y^{4}+4-2 i y^{3}+3 i y=0 \Rightarrow$ $y^{4}+4=0,2 y^{3}-3 y=0$, but $y^{4}+4=0$ has no real zeros, so $p(i y) \neq 0$.

We now consider the contour $O A B O$ where $O A$ is straight line joining $(0,0)$ and $(R, 0), A B$ is the arc of the circle $x^{2}+y^{2}=R^{2}$ in the first quadrant, and $B O$ is the line joining $(0, R)$ to $(0,0)$.

By the Argument Principle, the number of zeros of $p(z)$ in the first quadrant $=\frac{1}{2 \pi} \times$ (the change in the argument of $p(z)$ when z moves along the contour $O A B O$ oriented anticlockwise as $R \rightarrow \infty$).

Change in the argument along $O A$: On $O A, p(z)=x^{4}+2 x^{3}+3 x+4>0 \Rightarrow \arg p(z)=0$ for every x on $O A$. Therefore as z moves from O to A, the change in the argument of $p(z)$ i.e. $\Delta_{O A} \arg p(z)=0$.

Change in the argument along $B O$: On $B O, z=i y$ and $p(z)=y^{4}+4+i\left(3 y-2 y^{3}\right)$. Therefore $\arg p(z)=\tan ^{-1}\left(\frac{3 y-2 y^{3}}{y^{4}+4}\right)$.

$$
\left.\Delta_{B O} \arg p(z)=\tan ^{-1}\left(\frac{3 y-2 y^{3}}{y^{4}+4}\right)\right]_{\infty}^{0}=0-0=0
$$

Change in argument along $A B$: On arc $A B, z=R e^{i \theta}, 0 \leq \theta \leq \frac{\pi}{2}$, so that

$$
p(z)=R^{4} e^{4 i \theta}+2 R^{3} e^{3 i \theta}+3 R e^{i \theta}+4=R^{4} e^{4 i \theta}\left[1+\frac{2}{R e^{i \theta}}+\frac{3}{R^{3} e^{3 i \theta}}+\frac{4}{R^{4} e^{4 i \theta}}\right] \longrightarrow R^{4} e^{4 i \theta}
$$

as $R \rightarrow \infty$. Thus $\left.\Delta_{A B} \arg p(z)=4 \theta\right]_{0}^{\frac{\pi}{2}}=2 \pi .{ }^{1}$
Hence $\Delta_{O A B O} \arg p(z)=2 \pi$ as $R \rightarrow \infty$, so $p(z)$ has exactly one zero in the first quadrant.
Since $p(z)$ is a polynomial with real coefficients, it follows that if ζ is a zero of $p(z)$ and it lies in the first quadrant, then $\bar{\zeta}$ is also a zero of $p(z)$ and it lies in the fourth quadrant.

Thus $p(z)$ has one zero in each of the first and the fourth quadrants.
Question 1(c) Test for uniform convergence in the region $|z| \leq 1$ the series

$$
\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}}
$$

Solution. By definition

$$
\cos n z=\frac{e^{i n z}+e^{-i n z}}{2}=\frac{e^{-n y} e^{i n x}+e^{n y} e^{-i n x}}{2}
$$

[^0]For more information log on www.brijrbedu.org.
and therefore

$$
\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}}=\sum_{n=1}^{\infty} \frac{e^{-n y} e^{i n x}}{2 n^{3}}+\sum_{n=1}^{\infty} \frac{e^{n y} e^{-i n x}}{2 n^{3}}
$$

Case 1: $y>0$.

$$
\sum_{n=1}^{\infty}\left|\frac{e^{-n y} e^{i n x}}{2 n^{3}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{2 n^{3}}
$$

showing that the first term is absolutely convergent.
But the second term is not convergent, because its n-th term $\left|\frac{e^{n y} e^{-i n x}}{2 n^{3}}\right| \nrightarrow 0$ as $n \rightarrow \infty$ - in fact $\left|\frac{e^{n y} e^{-i n x}}{2 n^{3}}\right| \rightarrow \infty$ as $n \rightarrow \infty$ when $y>0$.

Therefore $\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}}$ is not even convergent when $y>0$.
Case 2: $y<0$. This case is entirely analogous to the above case - the first term $\sum_{n=1}^{\infty} \frac{e^{-n y} e^{i n x}}{2 n^{3}}$ is not convergent, so $\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}}$ is not convergent.

Case 3: $y=0 . \sum_{n=1}^{\infty} \frac{\cos n x}{n^{3}}$ is uniformly and absolutely convergent, because of Weierstrass M-test, which states that if $\sum_{n=1}^{\infty} f_{n}(z)$ is a series and there exist positive constants M_{n} such that $\left|f_{n}(z)\right|<M_{n}$ for every $z \in \Omega$ and $\sum_{n} M_{n}$ is convergent, then $\sum_{n=1}^{\infty} f_{n}(z)$ is absolutely and uniformly convergent in Ω. Here $M_{n}=\frac{1}{n^{3}}$ for all x.

Thus the given series converges uniformly only on the real axis in $|z| \leq 1$.
Question 2(a) Find the Laurent series for

1. $\frac{e^{2 z}}{(z-1)^{3}}$ about $z=1$.
2. $\frac{1}{z^{2}(z-3)^{2}}$ about $z=3$.

Solution.

1. The function $e^{2 z}$ is analytic everywhere in the complex plane. The Taylor series of $e^{2 z}$ with center $z=1$ is given by

$$
e^{2 z}=\sum_{n=0}^{\infty} \frac{\frac{d^{n} e^{2 z}}{\frac{z^{n}}{}} \text { at } z=1}{n!}(z-1)^{n}=\sum_{n=0}^{\infty} \frac{2^{n} e^{2}}{n!}(z-1)^{n}
$$

because $\frac{d^{n} e^{2 z}}{d z^{n}}=2^{n} e^{2 z}$. Thus

$$
\begin{aligned}
\frac{e^{2 z}}{(z-1)^{3}} & =\frac{e^{2}}{(z-1)^{3}}+\frac{2 e^{2}}{(z-1)^{2}}+\frac{4 e^{2}}{2!(z-1)}+\sum_{n=3}^{\infty} \frac{2^{n} e^{2}}{n!}(z-1)^{n-3} \\
& =\frac{e^{2}}{(z-1)^{3}}+\frac{2 e^{2}}{(z-1)^{2}}+\frac{4 e^{2}}{2!(z-1)}+\sum_{n=0}^{\infty} \frac{2^{n+3} e^{2}}{(n+3)!}(z-1)^{n}
\end{aligned}
$$

which is the required Laurent series of $\frac{e^{2 z}}{(z-1)^{3}}$ with center $z=1$. It is valid in the ring $1<|z|<\infty$.
2. Let $f(z)=\frac{1}{z^{2}}$ then

$$
f^{\prime}(z)=-\frac{2}{z^{3}}, f^{\prime \prime}(z)=\frac{(-2)(-3)}{z^{4}}, \ldots, f^{(n)}(z)=\frac{(-2)(-3) \ldots(-n-1)}{z^{n+2}}
$$

and therefore

$$
f(3)=\frac{1}{3^{2}}, f^{\prime}(3)=-\frac{2}{3^{3}}, \ldots, f^{(n)}(3)=\frac{(-1)^{n}(n+1)!}{3^{n+2}}
$$

Thus the Taylor series of $f(z)$ with center $z=3$ is given by

$$
\frac{1}{z^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)!}{3^{n+2} n!}(z-3)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{3^{n+2}}(z-3)^{n}
$$

Thus

$$
\frac{1}{z^{2}(z-3)^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{3^{n+2}}(z-3)^{n-2}=\frac{1}{3^{2}(z-3)^{2}}-\frac{2}{3^{3}(z-3)}+\sum_{m=0}^{\infty} \frac{(-1)^{m}(m+3)}{3^{m+4}}(z-3)^{m}
$$

is the required Laurent series of $\frac{1}{z^{2}(z-3)^{2}}$ with center $z=3$ valid in $0<|z|<3$.

Question 2(b) Find the residues of $f(z)=e^{z} \csc ^{2} z$ at all its poles in the finite plane.
Solution. The poles are at zeros of $\sin ^{2} z$, and $\sin ^{2} z=0$ iff $z=n \pi, n \in \mathbb{Z}$, the set of integers. All these poles are double poles.

Residue at $z=n \pi$ of $f(z)$ is $\frac{1}{1!} \frac{d}{d z}\left(\frac{(z-n \pi)^{2} e^{z}}{\sin ^{2} z}\right)_{z=n \pi}$. Now

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{(z-n \pi)^{2} e^{z}}{\sin ^{2} z}\right) & =\frac{\sin ^{2} z\left[(z-n \pi)^{2} e^{z}+2(z-n \pi) e^{z}\right]-(z-n \pi)^{2} e^{z} 2 \sin z \cos z}{\sin ^{4} z} \\
& =\frac{e^{z}(z-n \pi)}{\sin ^{3} z}((z-n \pi) \sin z+2 \sin z-2(z-n \pi) \cos z)
\end{aligned}
$$

Using $\lim _{z \rightarrow n \pi} \frac{z-n \pi}{\sin z}=\frac{1}{\cos n \pi}=(-1)^{n}$, we get

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{(z-n \pi)^{2} e^{z}}{\sin ^{2} z}\right)_{z=n \pi} & =e^{n \pi} \lim _{z \rightarrow n \pi} \frac{(z-n \pi)}{\sin ^{3} z}((z-n \pi) \sin z+2 \sin z-2(z-n \pi) \cos z) \\
& =e^{n \pi}(-1)^{n} \lim _{z \rightarrow n \pi} \frac{(z-n \pi)(\sin z-2 \cos z)+2 \sin z}{\sin ^{2} z} \\
& =e^{n \pi}(-1)^{n} \lim _{z \rightarrow n \pi} \frac{\sin z-2 \cos z+(z-n \pi)(\cos z+2 \sin z)+2 \cos z}{2 \sin z \cos z} \\
& =e^{n \pi} \lim _{z \rightarrow n \pi} \frac{\sin z+(z-n \pi)(\cos z+2 \sin z)}{2 \sin z} \\
& =e^{n \pi} \lim _{z \rightarrow n \pi} \frac{\cos z+\cos z+2 \sin z+(z-n \pi)(-\sin z+2 \cos z)}{2 \cos z} \\
& =e^{n \pi}
\end{aligned}
$$

Thus the residue at $z=n \pi$ of $e^{z} \csc ^{2} z$ is $e^{n \pi}$.
Question 2(c) By means of contour integration evaluate $\int_{0}^{\infty} \frac{\left(\log _{e} u\right)^{2}}{u^{2}+1} d u$.

Solution.

We take $f(z)=\frac{(\log z)^{2}}{z^{2}+1}$ and the contour C consisting of the line joining $(-R, 0)$ to $(-r, 0)$, the semicircle γ of radius r with center $(0,0)$, the line joining $(r, 0)$ to $(R, 0)$ and Γ a semicircle of radius R with center (0,0). The contour lies in the upper half plane and is oriented anticlockwise. We have avoided the branch point $z=0$ of the multiple valued function $\log z$.

(Eventually we shall let $R \rightarrow \infty, r \rightarrow 0$).
(1) On $\Gamma, z=R e^{i \theta}$ and $\left|1+z^{2}\right| \geq|z|^{2}-1=R^{2}-1$. Thus

$$
\begin{aligned}
\left|\int_{\Gamma} f(z) d z\right| & \leq\left|\int_{0}^{\pi} \frac{\left(\log \left(R e^{i \theta}\right)\right)^{2}}{R^{2}-1} i R e^{i \theta} d \theta\right| \\
& \leq \int_{0}^{\pi} \frac{|\log R+i \theta|^{2}}{R^{2}-1} R d \theta \\
& =\frac{R}{R^{2}-1} \int_{0}^{\pi}\left((\log R)^{2}+\theta^{2}\right) d \theta=\frac{R}{R^{2}-1}\left(\pi(\log R)^{2}+\frac{\pi^{3}}{3}\right)
\end{aligned}
$$

But $\frac{R}{R^{2}-1}\left(\pi(\log R)^{2}+\frac{\pi^{3}}{3}\right) \rightarrow 0$ as $R \rightarrow \infty$, therefore

$$
\lim _{R \rightarrow \infty} \int_{\Gamma} f(z) d z=0
$$

(2) On $\gamma, z=r e^{i \theta},|z|^{2}+1 \geq 1-|z|^{2}=1-r^{2}$. Thus

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\pi}^{0} \frac{(\log r)^{2}+\theta^{2}}{1-r^{2}} r d \theta=\frac{r}{1-r^{2}}\left(\pi(\log r)^{2}+\frac{\pi^{3}}{3}\right)
$$

But the right side $\rightarrow 0$ as $r \rightarrow 0$, it follows that $\lim _{r \rightarrow 0} \int_{\gamma} f(z) d z=0$.
(3) $f(z)$ has a simple pole at $z=i$ in the the upper half plane (inside C) and the residue at $z=i$ of $f(z)$ is $\frac{(\log i)^{2}}{2 i}=\frac{1}{2 i}\left(\frac{\pi i}{2}\right)^{2}=\frac{\pi^{2} i}{8}$. Thus

$$
\lim _{R \rightarrow \infty, r \rightarrow 0} \int_{C} f(z) d z=\lim _{R \rightarrow \infty, r \rightarrow 0} \int_{r}^{R} f(x) d x+\int_{R}^{r} f\left(x e^{i \pi}\right) d x e^{i \pi}=2 \pi i \frac{\pi^{2} i}{8}
$$

because on the line $C D, z=x$, and on the line $A B, z=x e^{i \pi}$. Hence

$$
-\int_{\infty}^{0} \frac{\left(\log \left(x e^{i \pi}\right)\right)^{2}}{1+x^{2} e^{2 \pi i}} d x+\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=-\frac{\pi^{3}}{4}
$$

Now $\left(\log \left(x e^{i \pi}\right)\right)^{2}=(\log x)^{2}-\pi^{2}+2 i \pi \log x$, so

$$
2 \int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x-\pi^{2} \int_{0}^{\infty} \frac{d x}{1+x^{2}}+2 i \pi \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=-\frac{\pi^{3}}{4}
$$

Equating real parts, and noting that $\left.\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\tan ^{-1} x\right]_{0}^{\infty}=\frac{\pi}{2}$, we get

$$
2 \int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{2}-\frac{\pi^{3}}{4}=\frac{\pi^{3}}{4}
$$

so that $\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}$.
Note that by equating imaginary parts, we get $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$.

[^0]: ${ }^{1}$ Alternately, $p(z)=z^{4}\left(1+\frac{2}{z}+\frac{3}{z^{3}}+\frac{4}{z^{4}}\right)=z^{4}(1+w)$ where $w=\frac{2}{z}+\frac{3}{z^{3}}+\frac{4}{z^{4}}$. Clearly $w \rightarrow 0$ as $R \rightarrow \infty$. Therefore $|1+w-1|<\epsilon$ for $|z|$ large. This means $1+w$ remains inside a circle of radius 1 as z moves along $A B$ and $R \rightarrow \infty$. Therefore $\Delta_{A B} \arg (1+w)=0$ and $\Delta_{A B} p(z)=\Delta_{A B} z^{4}+\Delta_{A B}(1+w)=4 \Delta_{A B} z=4 \cdot \frac{\pi}{2}=2 \pi$.

