UPSC Civil Services Main 1995 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Let $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$. Prove that u is a harmonic function. Find a harmonic function v such that $u+i v$ is an analytic function of z.

Solution. Clearly

$$
\begin{array}{cl}
\frac{\partial u}{\partial x}=6 x y+4 x & , \quad \frac{\partial u}{\partial y}=3 x^{2}-3 y^{2}-4 y \\
\frac{\partial^{2} u}{\partial x^{2}}=6 y+4 & , \quad \frac{\partial^{2} u}{\partial y^{2}}=-6 y-4
\end{array}
$$

Thus $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, showing that u is a harmonic function.
Let $f(z)=u+i v$, where v is to be so determined that $f(z)$ is analytic and v is harmonic. Such a function v along with u would have to satisfy the Cauchy-Riemann equations $\frac{\partial u}{\partial x}=$ $\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$. Now

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y} \\
& =6 x y+4 x-i\left(3 x^{2}-3 y^{2}-4 y\right) \\
& =-3 i\left(x^{2}-y^{2}+2 i x y\right)+4(x+i y) \\
& =-3 i z^{2}+4 z
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(z) & =2 z^{2}-i z^{3} \\
& =2(x+i y)^{2}-i(x+i y)^{3} \\
& =2 x^{2}-2 y^{2}+4 i x y-i x^{3}+3 x^{2} y+3 i x y^{2}-y^{3} \\
& =3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}+i\left(4 x y-x^{3}+3 x y^{2}\right)
\end{aligned}
$$

Thus $v=4 x y-x^{3}+3 x y^{2}$. Clearly

$$
\begin{aligned}
\frac{\partial v}{\partial x}=4 y-3 x^{2}+3 y^{2} & , \quad \frac{\partial v}{\partial y}=4 x+6 x y \\
\frac{\partial^{2} v}{\partial x^{2}}=-6 x & , \quad \frac{\partial^{2} v}{\partial y^{2}}=6 x
\end{aligned}
$$

so that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$, showing that v is a harmonic function.
Question 1(b) Find the Taylor series expansion of $f(z)=\frac{z}{z^{4}+9}$ around $z=0$. Find also the radius of convergence.

Solution. It is obvious that

$$
\begin{aligned}
f(z) & =\frac{z}{9}\left(1+\frac{z^{4}}{9}\right)^{-1}=\frac{z}{9}\left(1-\frac{z^{4}}{9}+\frac{z^{8}}{81}-\frac{z^{12}}{729}+\ldots\right) \\
& =\frac{z}{9} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z^{4}}{9}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+1}}{9^{n+1}}
\end{aligned}
$$

provided $\left|\frac{z^{4}}{9}\right|<1$. This indeed is Taylor's series representation of $f(z)$ which to start with is valid for $\left|\frac{z^{4}}{9}\right|<1$. The radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is given by $\left(\limsup \left|a_{n}\right|^{\frac{1}{n}}\right)^{-1}$. In this case the radius of convergence is $\left(\lim _{n \rightarrow \infty}\left(\frac{1}{9^{n+1}}\right)^{\frac{1}{4 n+1}}\right)^{-1}=$ $\lim _{n \rightarrow \infty} 9^{\frac{n+1}{4 n+1}}=9^{\frac{1}{4}}=\sqrt{3}$.

Note: We did not get the radius of convergence greater than the disc of validity namely $\left|\frac{z^{4}}{9}\right|<1$ as we have a singularity of $f(z)$ on $|z|=\sqrt{3}$, namely those z for which $z^{4}=-9=i^{2} 9$ or $z^{2}= \pm 3 i$.

Question 1(c) Let C be a circle $|z|=2$ oriented counter-clockwise. Evaluate the integral $\int_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z$ with the aid of residues.

Solution. By Cauchy's residue theorem, $\int_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z=2 \pi i$ (sum of residues at poles of $\frac{\cosh \pi z}{z\left(z^{2}+1\right)}$ inside $\left.C\right)$.

The only poles of $\frac{\cosh \pi z}{z\left(z^{2}+1\right)}$ are at $z=0, \pm i$ all within $|z|=2$. All these are simple poles.
Residue at $z=0$ is $\lim _{z \rightarrow 0} \frac{z \cosh \pi z}{z\left(z^{2}+1\right)}=1$.
Residue at $z=i$ is $\lim _{z \rightarrow i} \frac{(z-i) \cosh \pi z}{z\left(z^{2}+1\right)}=\frac{\cosh \pi i}{i \cdot 2 i}=-\frac{\cos \pi}{2}=\frac{1}{2}$.
Residue at $z=-i$ is $\lim _{z \rightarrow-i} \frac{(z+i) \cosh \pi z}{z\left(z^{2}+1\right)}=\frac{\cosh (-\pi i)}{(-i) \cdot(-2 i)}=\frac{1}{2}$.
Thus $\int_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z=2 \pi i\left[1+\frac{1}{2}+\frac{1}{2}\right]=4 \pi i$.
Question 2(a) Evaluate the integral $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x, a \geq 0$.

Solution.

Let $f(z)=\frac{e^{i a z}}{z^{2}+1}$. Let γ be the contour consisting of the line joining $(-R, 0)$ and $(R, 0)$ and Γ, which is the arc of the circle of radius R and center (0,0) lying in the upper half plane. γ is oriented counter-clockwise.

$$
\lim _{R \rightarrow \infty} \int_{\gamma} f(z) d z=\int_{-\infty}^{\infty} \frac{e^{i a x}}{x^{2}+1} d x+\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{i a z}}{z^{2}+1} d z
$$

Since $\left|z^{2}+1\right| \geq R^{2}-1$ on Γ and $\left|e^{i a z}\right|=\left|e^{i a R e^{i \theta}}\right|=\left|e^{-a R \sin \theta}\right| \leq 1$ because $\sin \theta \geq 0$ in $0 \leq \theta \leq \pi$, so

$$
\left|\int_{\Gamma} \frac{e^{i a z}}{z^{2}+1} d z\right| \leq \frac{\pi R}{R^{2}-1}
$$

as $d z=i R e^{i \theta} d \theta$, showing that $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{i a z}}{z^{2}+1} d z=0$.
By Cauchy's residue theorem, $\lim _{R \rightarrow \infty} \int_{\gamma} f(z) d z=2 \pi i$ (Sum of residues at poles of $\frac{e^{i a z}}{z^{2}+1}$ in the upper half plane). $z=i$ is the only pole of $f(z)$ in the upper half plane, and the residue there is given by $\lim _{z \rightarrow i} \frac{(z-i) e^{i a z}}{z^{2}+1}=\frac{e^{-a}}{2 i}$.

Thus $\int_{-\infty}^{\infty} \frac{e^{i a x}}{x^{2}+1} d x=\pi e^{-a}$, so

$$
\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\pi e^{-a}, \quad \int_{-\infty}^{\infty} \frac{\sin a x}{x^{2}+1} d x=0
$$

For more information log on www.brijrbedu.org.

Since $\frac{\cos a x}{x^{2}+1}$ is an even function of x,

$$
\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\frac{\pi e^{-a}}{2}
$$

Question 2(b) Let f be analytic in the entire complex plane. Suppose that there exists a constant $A>0$, such that $|f(z)| \leq A|z|$ for all z. Prove that there is a complex number a such that $f(z)=a z$ for all z.

Solution. We first prove (Cauchy's inequality) that if $f(z)$ is analytic in a domain G and if the disc $\left|z-z_{0}\right| \leq \rho \subseteq G$ then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M(\rho)}{\rho^{n}}
$$

where $M(\rho)=\max |f(z)|$ on $\left|z-z_{0}\right|=\rho$ - this follows from Cauchy's Integral formula:

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{\left|z-z_{0}\right|=\rho} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

and therefore

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \frac{M(\rho)}{\rho^{n+1}} 2 \pi \rho=\frac{n!M(\rho)}{\rho^{n}}
$$

We now prove that if $f(z)$ is entire i.e. analytic over the whole complex plane, and $|f(z)| \leq G|z|^{m}$ for all $|z|>R$, then $f(z)$ is a polynomial of degree $\leq m$.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a Taylor series of $f(z)$ around $z=0$. Then $a_{n}=\frac{f^{(n)}(0)}{n!}$. By Cauchy's inequality proved above, $\left|a_{n}\right|=\left|\frac{f^{(n)}(0)}{n!}\right| \leq \frac{M(r)}{r^{n}}$ where $M(r)$ is maximum of $|f(z)|$ on $|z|=r$. Let $r>R$, then $M(r) \leq G r^{m}$ and we get $\left|a_{n}\right| \leq \frac{G r^{m}}{r^{n}}=\frac{G}{r^{n-m}}$. and therefore as $r \rightarrow \infty, \frac{G}{r^{n-m}} \rightarrow 0$ for $n>m$ i.e. $\left|a_{n}\right|=0$ for $n>m$. Hence $f(z)=\sum_{r=0}^{m} a_{r} z^{r}$ i.e. $f(z)$ is a polynomial of degree $\leq m$.

Now we are given $|f(z)| \leq A|z|$. This means that $f(z)=a_{0}+a_{1} z$. But $0 \leq|f(0)| \leq$ $A \cdot 0 \Rightarrow f(0)=0 \Rightarrow a_{0}=0$, so $f(z)=a_{1} z$, where a_{1} is a constant.

Note: An alternative statement of the above question is: If $f(z)$ is an entire transcendental function, then whatever $G>0, R>0, m>0$ are prescribed, there exist points z such that $|f(z)|>G|z|^{m}$ and $|z|>R$.

Alternate solution: Consider the function $g(z)=\frac{f(z)}{z}, z \neq 0$ and $g(0)=f^{\prime}(0)$. Note that $|f(z)| \leq A|z| \Rightarrow f(0)=0$. Then g is continuous at 0 , because

$$
\lim _{z \rightarrow 0}|g(z)-g(0)|=\lim _{z \rightarrow 0}\left|\frac{f(z)}{z}-f^{\prime}(0)\right|=\lim _{z \rightarrow 0}\left|\frac{f(z)-f(0)}{z}-f^{\prime}(0)\right|=0
$$

Let $f=u+i v$, where u, v satisfy the Cauchy Riemann equations, since f is entire. Then

$$
g(z)=\frac{u+i v}{x+i y}=\frac{(u x+y v)+i(v x-u y)}{x^{2}+y^{2}}
$$

Writing $g(z)=U+i V$, we get $U=\frac{u x+y v}{x^{2}+y^{2}}, V=\frac{v x-u y}{x^{2}+y^{2}}$. Now it is clear that g is analytic over the entire complex plane except possibly at $z=0$. We now check the Cauchy Riemann equations for U, V at $z=0$. Note that $f(0)=0 \Rightarrow u(0,0)=v(0,0)=0$.

$$
\begin{aligned}
\frac{\partial U}{\partial x}(0,0) & =\lim _{h \rightarrow 0} \frac{U(h, 0)-U(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{u(h, 0)}{h}-u_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{u(h, 0)-h u_{x}(0,0)}{h^{2}} \\
& =\lim _{h \rightarrow 0} \frac{u_{x}(h, 0)-u_{x}(0,0)}{2 h}=\frac{1}{2} u_{x x}(0,0) \\
\frac{\partial U}{\partial y}(0,0) & =\lim _{k \rightarrow 0} \frac{U(0, k)-U(0,0)}{k}=\lim _{k \rightarrow 0} \frac{\frac{v(0, k)}{k}-u_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{v(0, k)-k u_{x}(0,0)}{k^{2}} \\
& =\lim _{k \rightarrow 0} \frac{v_{y}(0, k)-u_{x}(0,0)}{2 k}=\frac{1}{2} v_{y y}(0,0) \\
\frac{\partial V}{\partial x}(0,0) & =\lim _{h \rightarrow 0} \frac{V(h, 0)-V(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{v(h, 0)}{h}-v_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{v(h, 0)-h v_{x}(0,0)}{h^{2}} \\
& =\lim _{h \rightarrow 0} \frac{v_{x}(h, 0)-v_{x}(0,0)}{2 h}=\frac{1}{2} v_{x x}(0,0) \\
\frac{\partial V}{\partial y}(0,0) & =\lim _{k \rightarrow 0} \frac{V(0, k)-V(0,0)}{k}=\lim _{k \rightarrow 0} \frac{\frac{-u(0, k)}{k}-v_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{-u(0, k)-k v_{x}(0,0)}{k^{2}} \\
& =\lim _{k \rightarrow 0} \frac{-u_{y}(0, k)-v_{x}(0,0)}{2 k}=-\frac{1}{2} u_{y y}(0,0)
\end{aligned}
$$

Now by the Cauchy Riemann equations for $u, v, u_{x}=v_{y} \Rightarrow u_{x x}=v_{x y}$ and $u_{y}=-v_{x} \Rightarrow$ $u_{y y}=-v_{y x}$. Hence $U_{x}(0,0)=\frac{1}{2} u_{x x}(0,0)=\frac{1}{2} v_{x y}(0,0)=-\frac{1}{2} u_{y y}(0,0)=V_{y}(0,0)$.

Also, $v_{x}=-u_{y} \Rightarrow v_{x x}=-u_{x y}$, and $v_{y}=u_{x} \Rightarrow v_{y y}=u_{y x}$. So $U_{y}(0,0)=\frac{1}{2} v_{y y}(0,0)=$ $\frac{1}{2} u_{y x}=-\frac{1}{2} v_{x x}(0,0)=-V_{x}(0,0)$. Thus the Cauchy Riemann equations hold at (0,0) also, so $g(z)$ is analytic at 0 , as it is continuous at 0 . Thus $g(z)$ is an entire function.

But $|g(z)|=\left|\frac{f(z)}{z}\right| \leq \frac{A|z|}{|z|}=A$, so g is bounded over the complex plane. Hence by Liouville's theorem, g is a constant, say a. Thus $f(z)=a z$, as required.
Question 2(c) Suppose a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at a point $z_{0} \neq 0$. Let z_{1} be such that $\left|z_{1}\right|<\left|z_{0}\right|$ and $z_{1} \neq 0$. Show that the series converges uniformly in the disc $\left\{z:|z| \leq\left|z_{1}\right|\right\}$.

Solution. Let $\left|\frac{z_{1}}{z_{0}}\right|=\rho$, then $\rho<1$. Since $\sum_{n=0}^{\infty} a_{n} z_{0}^{n}$ is convergent, $a_{n} z_{0}^{n} \rightarrow 0$ as $n \rightarrow \infty$, therefore there exists M such that $\left|a_{n} z_{0}^{n}\right|<M$ for $n \geq 0$. Now let z be any point such that $|z| \leq\left|z_{1}\right|$, then

$$
\left|\sum_{n=r}^{r+p} a_{n} z^{n}\right| \leq \sum_{n=r}^{r+p}\left|a_{n} z^{n}\right|=\sum_{n=r}^{r+p}\left|a_{n} z_{0}^{n}\left(\frac{z}{z_{0}}\right)^{n}\right| \leq M \sum_{n=r}^{r+p}\left|\frac{z}{z_{0}}\right|^{n}=M \sum_{n=r}^{r+p} \rho^{n}
$$

Since the series $\sum_{n=0}^{\infty} \rho^{n}$ is convergent, given $\epsilon>0$ there exists N such that $\sum_{n=r}^{r+p} \rho^{n}<\frac{\epsilon}{M}$ for all $r \geq N$ and $p=1,2, \ldots$. Clearly this N is independent of z. Thus given $\epsilon>0$ there exists N independent of z such that

$$
\left|\sum_{n=r}^{r+p} a_{n} z^{n}\right|<\epsilon \text { for } n \geq N, p=1,2,3, \ldots
$$

i.e. the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is uniformly convergent for all z with $|z| \leq\left|z_{1}\right|$.

