
UPSC Civil Services Main 1995 - Mathematics
Complex Analysis

Question 1(a) Let u(x, y) = 3x2y + 2x2 − y3 − 2y2. Prove that u is a harmonic function.
Find a harmonic function v such that u+ iv is an analytic function of z.

Solution. Clearly

∂u

∂x
= 6xy + 4x ,

∂u

∂y
= 3x2 − 3y2 − 4y

∂2u

∂x2
= 6y + 4 ,

∂2u

∂y2
= −6y − 4

Thus
∂2u

∂x2
+
∂2u

∂y2
= 0, showing that u is a harmonic function.

Let f(z) = u+ iv, where v is to be so determined that f(z) is analytic and v is harmonic.

Such a function v along with u would have to satisfy the Cauchy-Riemann equations
∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −∂v

∂x
. Now

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂u

∂x
− i∂u

∂y

= 6xy + 4x− i(3x2 − 3y2 − 4y)

= −3i(x2 − y2 + 2ixy) + 4(x+ iy)

= −3iz2 + 4z
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Thus

f(z) = 2z2 − iz3

= 2(x+ iy)2 − i(x+ iy)3

= 2x2 − 2y2 + 4ixy − ix3 + 3x2y + 3ixy2 − y3

= 3x2y + 2x2 − y3 − 2y2 + i(4xy − x3 + 3xy2)

Thus v = 4xy − x3 + 3xy2. Clearly

∂v

∂x
= 4y − 3x2 + 3y2 ,

∂v

∂y
= 4x+ 6xy

∂2v

∂x2
= −6x ,

∂2v

∂y2
= 6x

so that
∂2v

∂x2
+
∂2v

∂y2
= 0, showing that v is a harmonic function.

Question 1(b) Find the Taylor series expansion of f(z) =
z

z4 + 9
around z = 0. Find also

the radius of convergence.

Solution. It is obvious that

f(z) =
z

9

(
1 +

z4

9

)−1

=
z

9

(
1− z4

9
+
z8

81
− z12

729
+ . . .

)
=

z

9

∞∑
n=0

(−1)n
(z4

9

)n
=
∞∑
n=0

(−1)n
z4n+1

9n+1

provided | z4
9
| < 1. This indeed is Taylor’s series representation of f(z) which to start

with is valid for | z4
9
| < 1. The radius of convergence of a power series

∞∑
n=0

anz
n is given

by
(

lim sup |an|
1
n

)−1

. In this case the radius of convergence is
(

lim
n→∞

( 1

9n+1

) 1
4n+1

)−1

=

lim
n→∞

9
n+1
4n+1 = 9

1
4 =
√

3.

Note: We did not get the radius of convergence greater than the disc of validity namely
| z4

9
| < 1 as we have a singularity of f(z) on |z| =

√
3, namely those z for which z4 = −9 = i29

or z2 = ±3i.

Question 1(c) Let C be a circle |z| = 2 oriented counter-clockwise. Evaluate the integral∫
C

cosh πz

z(z2 + 1)
dz with the aid of residues.
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Solution. By Cauchy’s residue theorem,

∫
C

cosh πz

z(z2 + 1)
dz = 2πi(sum of residues at poles of

cosh πz

z(z2 + 1)
inside C).

The only poles of
cosh πz

z(z2 + 1)
are at z = 0,±i all within |z| = 2. All these are simple poles.

Residue at z = 0 is lim
z→0

z cosh πz

z(z2 + 1)
= 1.

Residue at z = i is lim
z→i

(z − i) coshπz

z(z2 + 1)
=

cosh πi

i · 2i
= −cos π

2
=

1

2
.

Residue at z = −i is lim
z→−i

(z + i) coshπz

z(z2 + 1)
=

cosh(−πi)
(−i) · (−2i)

=
1

2
.

Thus

∫
C

cosh πz

z(z2 + 1)
dz = 2πi

[
1 +

1

2
+

1

2

]
= 4πi.

Question 2(a) Evaluate the integral

∫ ∞
0

cos ax

x2 + 1
dx, a ≥ 0.

Solution.

Let f(z) =
eiaz

z2 + 1
. Let γ be the con-

tour consisting of the line joining (−R, 0) and
(R, 0) and Γ, which is the arc of the circle of
radius R and center (0, 0) lying in the upper
half plane. γ is oriented counter-clockwise.

Γ

(R, 0)(−R, 0) (0, 0)

lim
R→∞

∫
γ

f(z) dz =

∫ ∞
−∞

eiax

x2 + 1
dx+ lim

R→∞

∫
Γ

eiaz

z2 + 1
dz

Since |z2 + 1| ≥ R2 − 1 on Γ and |eiaz| = |eiaReiθ | = |e−aR sin θ| ≤ 1 because sin θ ≥ 0 in
0 ≤ θ ≤ π, so ∣∣∣∣∫

Γ

eiaz

z2 + 1
dz

∣∣∣∣ ≤ πR

R2 − 1

as dz = iReiθ dθ, showing that lim
R→∞

∫
Γ

eiaz

z2 + 1
dz = 0.

By Cauchy’s residue theorem, limR→∞
∫
γ
f(z) dz = 2πi( Sum of residues at poles of

eiaz

z2 + 1
in the upper half plane). z = i is the only pole of f(z) in the upper half plane, and

the residue there is given by lim
z→i

(z − i)eiaz

z2 + 1
=
e−a

2i
.

Thus

∫ ∞
−∞

eiax

x2 + 1
dx = πe−a, so∫ ∞

−∞

cos ax

x2 + 1
dx = πe−a,

∫ ∞
−∞

sin ax

x2 + 1
dx = 0
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Since
cos ax

x2 + 1
is an even function of x,

∫ ∞
0

cos ax

x2 + 1
dx =

1

2

∫ ∞
−∞

cos ax

x2 + 1
dx =

πe−a

2

Question 2(b) Let f be analytic in the entire complex plane. Suppose that there exists a
constant A > 0, such that |f(z)| ≤ A|z| for all z. Prove that there is a complex number a
such that f(z) = az for all z.

Solution. We first prove (Cauchy’s inequality) that if f(z) is analytic in a domain G and
if the disc |z − z0| ≤ ρ ⊆ G then

|f (n)(z0)| ≤ n!M(ρ)

ρn

where M(ρ) = max |f(z)| on |z − z0| = ρ — this follows from Cauchy’s Integral formula:

f (n)(z0) =
n!

2πi

∫
|z−z0|=ρ

f(z)

(z − z0)n+1
dz

and therefore

|f (n)(z0)| ≤ n!

2π

M(ρ)

ρn+1
2πρ =

n!M(ρ)

ρn

We now prove that if f(z) is entire i.e. analytic over the whole complex plane, and
|f(z)| ≤ G|z|m for all |z| > R, then f(z) is a polynomial of degree ≤ m.

Let f(z) =
∑∞

n=0 anz
n be a Taylor series of f(z) around z = 0. Then an =

f (n)(0)

n!
.

By Cauchy’s inequality proved above, |an| =
∣∣∣f (n)(0)

n!

∣∣∣ ≤ M(r)

rn
where M(r) is maximum

of |f(z)| on |z| = r. Let r > R, then M(r) ≤ Grm and we get |an| ≤
Grm

rn
=

G

rn−m
. and

therefore as r →∞,
G

rn−m
→ 0 for n > m i.e. |an| = 0 for n > m. Hence f(z) =

∑m
r=0 arz

r

i.e. f(z) is a polynomial of degree ≤ m.
Now we are given |f(z)| ≤ A|z|. This means that f(z) = a0 + a1z. But 0 ≤ |f(0)| ≤

A · 0⇒ f(0) = 0⇒ a0 = 0, so f(z) = a1z, where a1 is a constant.
Note: An alternative statement of the above question is: If f(z) is an entire transcen-

dental function, then whatever G > 0, R > 0,m > 0 are prescribed, there exist points z such
that |f(z)| > G|z|m and |z| > R.
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Alternate solution: Consider the function g(z) = f(z)
z
, z 6= 0 and g(0) = f ′(0). Note that

|f(z)| ≤ A|z| ⇒ f(0) = 0. Then g is continuous at 0, because

lim
z→0
|g(z)− g(0)| = lim

z→0

∣∣∣∣f(z)

z
− f ′(0)

∣∣∣∣= lim
z→0

∣∣∣∣f(z)− f(0)

z
− f ′(0)

∣∣∣∣= 0

Let f = u+ iv, where u, v satisfy the Cauchy Riemann equations, since f is entire. Then

g(z) =
u+ iv

x+ iy
=

(ux+ yv) + i(vx− uy)

x2 + y2

Writing g(z) = U + iV , we get U =
ux+ yv

x2 + y2
, V =

vx− uy
x2 + y2

. Now it is clear that g is analytic

over the entire complex plane except possibly at z = 0. We now check the Cauchy Riemann
equations for U, V at z = 0. Note that f(0) = 0⇒ u(0, 0) = v(0, 0) = 0.

∂U

∂x
(0, 0) = lim

h→0

U(h, 0)− U(0, 0)

h
= lim

h→0

u(h,0)
h
− ux(0, 0)

h
= lim

h→0

u(h, 0)− hux(0, 0)

h2

= lim
h→0

ux(h, 0)− ux(0, 0)

2h
=

1

2
uxx(0, 0)

∂U

∂y
(0, 0) = lim

k→0

U(0, k)− U(0, 0)

k
= lim

k→0

v(0,k)
k
− ux(0, 0)

k
= lim

k→0

v(0, k)− kux(0, 0)

k2

= lim
k→0

vy(0, k)− ux(0, 0)

2k
=

1

2
vyy(0, 0)

∂V

∂x
(0, 0) = lim

h→0

V (h, 0)− V (0, 0)

h
= lim

h→0

v(h,0)
h
− vx(0, 0)

h
= lim

h→0

v(h, 0)− hvx(0, 0)

h2

= lim
h→0

vx(h, 0)− vx(0, 0)

2h
=

1

2
vxx(0, 0)

∂V

∂y
(0, 0) = lim

k→0

V (0, k)− V (0, 0)

k
= lim

k→0

−u(0,k)
k
− vx(0, 0)

k
= lim

k→0

−u(0, k)− kvx(0, 0)

k2

= lim
k→0

−uy(0, k)− vx(0, 0)

2k
= −1

2
uyy(0, 0)

Now by the Cauchy Riemann equations for u, v, ux = vy ⇒ uxx = vxy and uy = −vx ⇒
uyy = −vyx. Hence Ux(0, 0) = 1

2
uxx(0, 0) = 1

2
vxy(0, 0) = −1

2
uyy(0, 0) = Vy(0, 0).

Also, vx = −uy ⇒ vxx = −uxy, and vy = ux ⇒ vyy = uyx. So Uy(0, 0) = 1
2
vyy(0, 0) =

1
2
uyx = −1

2
vxx(0, 0) = −Vx(0, 0). Thus the Cauchy Riemann equations hold at (0, 0) also, so

g(z) is analytic at 0, as it is continuous at 0. Thus g(z) is an entire function.

But |g(z)| = |f(z)
z
| ≤ A|z|

|z| = A, so g is bounded over the complex plane. Hence by

Liouville’s theorem, g is a constant, say a. Thus f(z) = az, as required.

Question 2(c) Suppose a power series
∞∑
n=0

anz
n converges at a point z0 6= 0. Let z1 be

such that |z1| < |z0| and z1 6= 0. Show that the series converges uniformly in the disc
{z : |z| ≤ |z1|}.
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Solution. Let | z1
z0
| = ρ, then ρ < 1. Since

∑∞
n=0 anz

n
0 is convergent, anz

n
0 → 0 as n → ∞,

therefore there exists M such that |anzn0 | < M for n ≥ 0. Now let z be any point such that
|z| ≤ |z1|, then

∣∣∣ r+p∑
n=r

anz
n
∣∣∣ ≤ r+p∑

n=r

|anzn| =
r+p∑
n=r

∣∣∣anzn0( zz0

)n∣∣∣ ≤M

r+p∑
n=r

∣∣∣ z
z0

∣∣∣n = M

r+p∑
n=r

ρn

Since the series
∞∑
n=0

ρn is convergent, given ε > 0 there exists N such that

r+p∑
n=r

ρn <
ε

M

for all r ≥ N and p = 1, 2, . . .. Clearly this N is independent of z. Thus given ε > 0 there
exists N independent of z such that

∣∣∣ r+p∑
n=r

anz
n
∣∣∣ < ε for n ≥ N, p = 1, 2, 3, . . .

i.e. the series
∞∑
n=0

anz
n is uniformly convergent for all z with |z| ≤ |z1|.
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