UPSC Civil Services Main 1996 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Sketch the ellipse C described in the complex plane by

$$
z=A \cos \lambda t+i B \sin \lambda t, A>B
$$

where t is a real variable and A, B, λ are positive constants.
If C is the trajectory of a particle with $z(t)$ as the position vector of the particle at time t, identify with justification

1. the two positions where the velocity is minimum.
2. the two positions where the acceleration is maximum.

Solution. We are given that $x=A \cos \lambda t, y=B \sin \lambda t$ which implies that $\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=1$. Since $A>B$, it follows that it is the standard ellipse with $2 A$ as the major axis and $2 B$ as the minor axis.

1
For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

1. The velocity $v=\frac{d z}{d t}=-A \lambda \sin \lambda t+i B \lambda \cos \lambda t$.

$$
\begin{aligned}
\text { Speed } & =\text { magnitude of velocity }=\left|\frac{d z}{d t}\right| \\
& =\sqrt{A^{2} \lambda^{2} \sin ^{2} \lambda t+B^{2} \lambda^{2} \cos ^{2} \lambda t} \\
& =\lambda \sqrt{\left(A^{2}-B^{2}\right) \sin ^{2} \lambda t+B^{2}}
\end{aligned}
$$

Since $A^{2}-B^{2}>0$, the speed is minimum when $\sin ^{2} \lambda t=0$ i.e. when $x(t)= \pm A, y(t)=$ 0 i.e. when the particle is at the two ends of the major axis, the points A and A^{\prime} in the figure.
2. Acceleration $=\frac{d^{2} z}{d t^{2}}=-A \lambda^{2} \cos \lambda t-i B \lambda^{2} \sin \lambda t$.

Magnitude of acceleration $=\lambda^{2} \sqrt{A^{2} \cos ^{2} \lambda t+B^{2} \sin ^{2} \lambda t}=\lambda^{2} \sqrt{\left(A^{2}-B^{2}\right) \cos ^{2} \lambda t+B^{2}}$. Since $A^{2}-B^{2}>0$, acceleration is maximum when $\cos ^{2} \lambda t=1 \Rightarrow \cos \lambda t= \pm 1$ i.e. the particle is at either end of the major axis, A or A^{\prime}. (Note that acceleration is minimum when $\cos ^{2} \lambda t=0$ i.e. the particle is at either end of the minor axis).

Question 1(b) Evaluate $\lim _{z \rightarrow 0} \frac{1-\cos z}{\sin \left(z^{2}\right)}$.

Solution.

$$
\lim _{z \rightarrow 0} \frac{1-\cos z}{\sin \left(z^{2}\right)}=\lim _{z \rightarrow 0} \frac{2 \sin ^{2} \frac{z}{2}}{\sin \left(z^{2}\right)}=\lim _{z \rightarrow 0} \frac{2}{4} \frac{\left.\frac{\sin ^{2} z}{\left(\frac{z}{2}\right.}\right)^{2}}{\frac{\sin \left(z^{2}\right)}{z^{2}}}=\frac{1}{2}
$$

Note that $\sin z$ has a simple zero at $z=0$ and $\sin z=z \phi(z)$ where $\phi(z)$ is analytic and $\phi(0)=1$, so $\lim _{z \rightarrow 0} \frac{\sin z}{z}=1$.

Question 1(c) Show that $z=0$ is not a branch point for the function $f(z)=\frac{\sin \sqrt{z}}{\sqrt{z}}$. Is it a removable singularity?

Solution. We know that $w=\sqrt{z}$ is a multiple valued function and has two branches. Once we fix a branch of $w=\sqrt{z}, \sin \sqrt{z}$ is analytic, and

$$
\sin \sqrt{z}=\sqrt{z}-\frac{(\sqrt{z})^{3}}{3!}+\frac{(\sqrt{z})^{5}}{5!}+\ldots
$$

or

$$
\frac{\sin \sqrt{z}}{\sqrt{z}}=1-\frac{z}{3!}+\frac{z^{2}}{5!}-\frac{z^{3}}{7!}+\ldots
$$

Thus $\lim _{z \rightarrow 0} \frac{\sin \sqrt{z}}{\sqrt{z}}=1$, so $z=0$ is not a branch point of the function $f(z)=\frac{\sin \sqrt{z}}{\sqrt{z}}$. In fact $z=0$ is a removable singularity of $f(z)$. In fact

$$
F(z)= \begin{cases}\frac{\sin \sqrt{z}}{\sqrt{z}}, & z \neq 0 \\ 1, & z=0\end{cases}
$$

is analytic everywhere once a branch of \sqrt{z} is specified.
Question 2(a) Prove that every polynomial equation $a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}=0, a_{n} \neq$ $0, n \geq 1$ has exactly n roots.

Solution. Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}$. Suppose, if possible, that $P(z) \neq 0$ for any $z \in \mathbb{C}$. Let $f(z)=\frac{1}{P(z)}$, then $f(z)$ is an entire function i.e. $f(z)$ is analytic in the whole complex plane. We shall now show that $f(z)$ is bounded.

$$
P(z)=z^{n}\left(a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\ldots+\frac{a_{0}}{z^{n}}\right)
$$

Since $\frac{a_{j}}{z^{n-j}} \rightarrow 0$ as $z \rightarrow \infty$, for $0 \leq j<n$, is follows that given $\epsilon=\frac{\left|a_{n}\right|}{2 n}$ there exists $R>0$ such that $|z|>R \Rightarrow\left|\frac{a_{j}}{z^{n-j}}\right|<\frac{\left|a_{n}\right|}{2 n}$ for $0 \leq j<n$. Thus

$$
\left|a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\ldots+\frac{a_{0}}{z^{n}}\right| \geq\left|a_{n}\right|-n\left|\frac{a_{n}}{2 n}\right|=\left|\frac{a_{n}}{2}\right|
$$

and therefore

$$
|f(z)|=\left|\frac{1}{P(z)}\right|=\left|\frac{1}{z^{n}\left(a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\ldots+\frac{a_{0}}{z^{n}}\right)}\right| \leq \frac{2}{\left|a_{n}\right| R^{n}} \quad \text { for }|z|>R
$$

Since $|z| \leq R$ is a compact set and $f(z)$ is analytic on it, $f(z)$ is bounded on $|z| \leq R$. Consequently $f(z)$ is bounded on the whole complex plane. Now we use Liouville's theorem - If an entire function is bounded on the whole complex plane, then it is a constant. Thus $f(z)$ and therefore $P(z)$ is a constant, which is not true, hence our assumption that $P(z) \neq 0$ for all $z \in \mathbb{C}$ is false. So there is at least one $z_{1} \in \mathbb{C}$ where $P\left(z_{1}\right)=0$. (This result is called the fundamental theorem of algebra.)

We now prove by induction on n that $P(z)$ has n zeros. If $n=1, P(z)=a_{0}+a_{1} z$ has one zero namely $z=-\frac{a_{0}}{a_{1}}$.

Assume as induction hypothesis that any polynomial of degree $n-1$ has $n-1$ zeros. By Euclid's algorithm, , we get $P_{1}(z)$ and $R(z)$ such that $P(z)=\left(z-z_{1}\right) P_{1}(z)+R(z)$, where $R(z) \equiv 0$ or $\operatorname{deg} R(z)<1$ i.e. $R(z)$ is a constant. Putting $z=z_{1}$ we get $R(z) \equiv 0$, so $P(z)=\left(z-z_{1}\right) P_{1}(z)$. Since $P_{1}(z)$ is a polynomial of degree $n-1$, by induction hypothesis it has $n-1$ roots in \mathbb{C}, and therefore $P(z)$ has n roots in \mathbb{C}.

We now prove that $P(z)$ has exactly n roots. Let $z_{1}, z_{2}, \ldots, z_{n}$ be the (not necessarily distinct) roots of $P(z)$. Let $g(z)=\frac{P(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)}$. Clearly $g(z)$ is analytic in the whole complex plane. Since

$$
\lim _{z \rightarrow \infty} g(z)=\lim _{z \rightarrow \infty} \frac{P(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)}=\frac{a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\ldots+\frac{a_{0}}{z^{n}}}{\left(1-\frac{z_{1}}{z}\right)\left(1-\frac{z_{2}}{z}\right) \ldots\left(1-\frac{z_{n}}{z}\right)}=a_{n}
$$

it follows that given $\epsilon>0$ there exists R such that $\left|g(z)-a_{n}\right|<\epsilon$ for $|z|>R$, so $g(z)$ is bounded in the region $|z|>R$. The function $g(z)$ being analytic is bounded in the compact region $|z| \leq R$. Thus by Liouville's theorem $g(z)$ is a constant, in fact $g(z)=a_{n}$, and therefore

$$
P(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)
$$

Thus if ζ is a zero of $P(z)$, then $\zeta=z_{j}$ for some $j, 1 \leq j \leq n$. Thus $P(z)$ has exactly n zeroes.

Alternate Proof: We shall use Rouche's theorem - Let γ be a simple closed rectifiable curve. Let $f(z), g(z)$ be analytic on and within γ. Suppose $|g(z)|<|f(z)|$ on γ, then $f(z)$ and $f(z) \pm g(z)$ have the same number of zeroes inside γ.

Let $f(z)=a_{n} z^{n}$ and $g(z)=a_{n-1} z^{n-1}+\ldots+a_{0}$. Let R be so large that $|g(z)|<|f(z)|$ on $|z|=R$. Then $f(z)$ and $f(z)+g(z)=P(z)$ have the same number of zeroes within $|z|=R$. But whatever $R>0$ we take, $f(z)$ has exactly n zeroes in $|z|=R$, therefore $P(z)$ has exactly n zeroes in \mathbb{C}.

Note: Rouche's theorem follows from the Argument Principle - Note that $\Delta_{\gamma}(\arg (f(z)+$ $g(z)))=$ change in argument of $f(z)+g(z)$ as z moves along $\gamma=\Delta_{\gamma} \arg f(z)+\Delta_{\gamma} \arg \left(1+\frac{g(z)}{f(z)}\right)$ as $f(z) \neq 0$ along γ. But $\Delta_{\gamma} \arg \left(1+\frac{g(z)}{f(z)}\right)=0$ because $\left|\frac{g(z)}{f(z)}\right|<1$ and therefore $\frac{g(z)}{f(z)}$ continues to lie in the disc $|w-1|<1$ as z moves on γ i.e. does not go around the origin.

Question 2(b) By using the residue theorem, evaluate

$$
\int_{0}^{\infty} \frac{\log _{e}\left(x^{2}+1\right)}{x^{2}+1} d x
$$

Solution.

Let $f(z)=\frac{\log (z+i)}{1+z^{2}}$ and we consider $\log (z+i)$ in $\mathbb{C}-\{z \mid z=i y, y \leq-1\}$, where it is single-valued. Let γ be the contour consisting of the line joining $(-R, 0)$ and $(R, 0)$ and Γ, which is the arc of the circle of radius R and center (0,0) lying in the upper half plane. γ is oriented counter-clockwise.

Clearly $f(z)$ has a simple pole at $z=i$ in the upper half plane. The residue at $z=i$ is

$$
\lim _{z \rightarrow i} \frac{(z+i) \log (z+i)}{1+z^{2}}=\frac{\log 2 i}{2 i}=\frac{1}{2 i} \log 2 e^{\frac{\pi i}{2}}=\frac{1}{2 i}\left[\log 2+i \frac{\pi}{2}\right]=\frac{\pi}{4}-\frac{1}{2} i \log 2
$$

Thus by Cauchy's residue theorem

$$
\lim _{R \rightarrow \infty} \int_{\gamma} \frac{\log (z+i)}{1+z^{2}}=\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{\log (z+i)}{1+z^{2}}+\int_{-\infty}^{\infty} \frac{\log (x+i)}{1+x^{2}} d x=2 \pi i\left[\frac{\pi}{4}-\frac{1}{2} i \log 2\right]
$$

as $z=x$ on the real axis.
We shall now show that $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{\log (z+i)}{1+z^{2}}=0$. On $\Gamma, z=R e^{i \theta}$, so

$$
\left|\int_{\Gamma} \frac{\log (z+i)}{1+z^{2}}\right|=\left|\int_{0}^{\pi} \frac{\log \left(R e^{i \theta}+i\right) R i e^{i \theta}}{R^{2} e^{2 i \theta}+1} d \theta\right|
$$

Now $\left|R^{2} e^{2 i \theta}+1\right| \geq R^{2}-1, \log \left(R e^{i \theta}+i\right)=\log R e^{i \theta}+\log \left(1+\frac{i}{R e^{i \theta}}\right)$. Clearly $\left|\log R e^{i \theta}\right|=$ $|\log R+i \theta| \leq \log R+\pi$ and therefore

$$
\left|\int_{\Gamma} \frac{\log (z+i)}{1+z^{2}}\right| \leq \int_{0}^{\pi} \frac{(\pi+\log R) R}{R^{2}-1} d \theta+\int_{0}^{\pi} \frac{R\left|\log \left(1+\frac{i}{R e^{i \theta}}\right)\right|}{R^{2}-1} d \theta
$$

Since $\frac{(\pi+\log R) R}{R^{2}-1} \rightarrow 0$ and $\frac{R\left|\log \left(1+\frac{i}{R e^{i \theta}}\right)\right|}{R^{2}-1} \rightarrow 0$ as $R \rightarrow \infty$, it follows that $\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{\log (z+i)}{1+z^{2}}=$ 0 .

Thus

$$
\int_{-\infty}^{\infty} \frac{\log (x+i)}{1+x^{2}} d x=\pi \log 2+i \frac{\pi^{2}}{2}
$$

Equating real and imaginary parts, we get

$$
\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right)}{1+x^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\log \left(1+x^{2}\right)}{1+x^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\log (x+i)+\log (x-i)}{1+x^{2}} d x=\frac{1}{2}[2 \pi \log 2]=\pi \log 2
$$

Question 2(c) Find the Laurent expansion of $f(z)=(z-3) \sin \left(\frac{1}{z+2}\right)$ about the singularity $z=-2$. Specify the region of convergence and the nature of the singularity at $z=-2$.
Solution. It is well known that

$$
\begin{aligned}
\sin \left(\frac{1}{z+2}\right) & =\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2 k-1)!}\left(\frac{1}{z+2}\right)^{2 k-1} \\
\Rightarrow(z-3) \sin \left(\frac{1}{z+2}\right) & =(z+2) \sin \left(\frac{1}{z+2}\right)-5 \sin \left(\frac{1}{z+2}\right) \\
& =(z+2) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2 k-1)!}\left(\frac{1}{z+2}\right)^{2 k-1}-5 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2 k-1)!}\left(\frac{1}{z+2}\right)^{2 k-1} \\
& =\sum_{k=0}^{\infty} \frac{a_{k}}{(z+2)^{k}}, \quad a_{2 k-2}=\frac{(-1)^{k-1}}{(2 k-1)!}, \quad a_{2 k-1}=\frac{5(-1)^{k-1}}{(2 k-1)!}
\end{aligned}
$$

For more information log on www.brijrbedu.org.

The region of convergence of the series is $0<|z+2|<\infty$. The Laurent expansion shows that the function has an essential singularity at $z=-2$ - this also follows from the fact that $\lim _{z \rightarrow 0} \sin \frac{1}{z}$ does not exist.

