
UPSC Civil Services Main 1996 - Mathematics
Complex Analysis

Question 1(a) Sketch the ellipse C described in the complex plane by

z = A cosλt+ iB sinλt, A > B

where t is a real variable and A,B, λ are positive constants.
If C is the trajectory of a particle with z(t) as the position vector of the particle at time

t, identify with justification

1. the two positions where the velocity is minimum.

2. the two positions where the acceleration is maximum.

Solution. We are given that x = A cosλt, y = B sinλt which implies that
x2

A2
+
y2

B2
= 1.

Since A > B, it follows that it is the standard ellipse with 2A as the major axis and 2B as
the minor axis.

O A(A, 0)

B(0, B)

A′

(−A, 0)

B′(0,−B)

C
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1. The velocity v =
dz

dt
= −Aλ sinλt+ iBλ cosλt.

Speed = magnitude of velocity =
∣∣∣dz
dt

∣∣∣
=

√
A2λ2 sin2 λt+B2λ2 cos2 λt

= λ
√

(A2 −B2) sin2 λt+B2

Since A2−B2 > 0, the speed is minimum when sin2 λt = 0 i.e. when x(t) = ±A, y(t) =
0 i.e. when the particle is at the two ends of the major axis, the points A and A′ in
the figure.

2. Acceleration =
d2z

dt2
= −Aλ2 cosλt− iBλ2 sinλt.

Magnitude of acceleration = λ2
√
A2 cos2 λt+B2 sin2 λt = λ2

√
(A2 −B2) cos2 λt+B2.

Since A2 − B2 > 0, acceleration is maximum when cos2 λt = 1⇒ cosλt = ±1 i.e. the
particle is at either end of the major axis, A or A′. (Note that acceleration is minimum
when cos2 λt = 0 i.e. the particle is at either end of the minor axis).

Question 1(b) Evaluate lim
z→0

1− cos z

sin(z2)
.

Solution.

lim
z→0

1− cos z

sin(z2)
= lim

z→0

2 sin2 z
2

sin(z2)
= lim

z→0

2

4

sin2 z
2

( z
2

)2

sin(z2)
z2

=
1

2

Note that sin z has a simple zero at z = 0 and sin z = zφ(z) where φ(z) is analytic and

φ(0) = 1, so lim
z→0

sin z

z
= 1.

Question 1(c) Show that z = 0 is not a branch point for the function f(z) =
sin
√
z√

z
. Is it

a removable singularity?

Solution. We know that w =
√
z is a multiple valued function and has two branches. Once

we fix a branch of w =
√
z, sin

√
z is analytic, and

sin
√
z =
√
z − (

√
z)3

3!
+

(
√
z)5

5!
+ . . .

or
sin
√
z√

z
= 1− z

3!
+
z2

5!
− z3

7!
+ . . .

2
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



Thus lim
z→0

sin
√
z√

z
= 1, so z = 0 is not a branch point of the function f(z) =

sin
√
z√

z
. In fact

z = 0 is a removable singularity of f(z). In fact

F (z) =

{
sin
√
z√

z
, z 6= 0

1, z = 0

is analytic everywhere once a branch of
√
z is specified.

Question 2(a) Prove that every polynomial equation a0 + a1z+ a2z
2 + . . .+ anz

n = 0, an 6=
0, n ≥ 1 has exactly n roots.

Solution. Let P (z) = a0 + a1z + a2z
2 + . . . + anz

n. Suppose, if possible, that P (z) 6= 0

for any z ∈ C. Let f(z) =
1

P (z)
, then f(z) is an entire function i.e. f(z) is analytic in the

whole complex plane. We shall now show that f(z) is bounded.

P (z) = zn
(
an +

an−1

z
+
an−2

z2
+ . . .+

a0

zn

)
Since

aj
zn−j

→ 0 as z → ∞, for 0 ≤ j < n, is follows that given ε = |an|
2n

there exists R > 0

such that |z| > R⇒
∣∣∣ aj
zn−j

∣∣∣ < |an|
2n

for 0 ≤ j < n. Thus∣∣∣∣an +
an−1

z
+
an−2

z2
+ . . .+

a0

zn

∣∣∣∣ ≥ |an| − n∣∣∣an2n

∣∣∣ =
∣∣∣an

2

∣∣∣
and therefore

|f(z)| =
∣∣∣∣ 1

P (z)

∣∣∣∣ =

∣∣∣∣ 1

zn
(
an + an−1

z
+ an−2

z2
+ . . .+ a0

zn

)∣∣∣∣ ≤ 2

|an|Rn
for |z| > R

Since |z| ≤ R is a compact set and f(z) is analytic on it, f(z) is bounded on |z| ≤ R.
Consequently f(z) is bounded on the whole complex plane. Now we use Liouville’s theorem
— If an entire function is bounded on the whole complex plane, then it is a constant. Thus
f(z) and therefore P (z) is a constant, which is not true, hence our assumption that P (z) 6= 0
for all z ∈ C is false. So there is at least one z1 ∈ C where P (z1) = 0. (This result is called
the fundamental theorem of algebra.)

We now prove by induction on n that P (z) has n zeros. If n = 1, P (z) = a0 + a1z has
one zero namely z = −a0

a1
.

Assume as induction hypothesis that any polynomial of degree n− 1 has n− 1 zeros. By
Euclid’s algorithm, , we get P1(z) and R(z) such that P (z) = (z − z1)P1(z) + R(z), where
R(z) ≡ 0 or degR(z) < 1 i.e. R(z) is a constant. Putting z = z1 we get R(z) ≡ 0, so
P (z) = (z − z1)P1(z). Since P1(z) is a polynomial of degree n− 1, by induction hypothesis
it has n− 1 roots in C, and therefore P (z) has n roots in C.
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We now prove that P (z) has exactly n roots. Let z1, z2, . . . , zn be the (not necessarily

distinct) roots of P (z). Let g(z) =
P (z)

(z − z1)(z − z2) . . . (z − zn)
. Clearly g(z) is analytic in

the whole complex plane. Since

lim
z→∞

g(z) = lim
z→∞

P (z)

(z − z1)(z − z2) . . . (z − zn)
=
an + an−1

z
+ an−2

z2
+ . . .+ a0

zn

(1− z1
z

)(1− z2
z

) . . . (1− zn
z

)
= an

it follows that given ε > 0 there exists R such that |g(z) − an| < ε for |z| > R, so g(z) is
bounded in the region |z| > R. The function g(z) being analytic is bounded in the compact
region |z| ≤ R. Thus by Liouville’s theorem g(z) is a constant, in fact g(z) = an, and
therefore

P (z) = an(z − z1)(z − z2) . . . (z − zn)

Thus if ζ is a zero of P (z), then ζ = zj for some j, 1 ≤ j ≤ n. Thus P (z) has exactly n
zeroes.

Alternate Proof: We shall use Rouche’s theorem — Let γ be a simple closed rectifiable
curve. Let f(z), g(z) be analytic on and within γ. Suppose |g(z)| < |f(z)| on γ, then f(z)
and f(z)± g(z) have the same number of zeroes inside γ.

Let f(z) = anz
n and g(z) = an−1z

n−1 + . . . + a0. Let R be so large that |g(z)| < |f(z)|
on |z| = R. Then f(z) and f(z) + g(z) = P (z) have the same number of zeroes within
|z| = R. But whatever R > 0 we take, f(z) has exactly n zeroes in |z| = R, therefore P (z)
has exactly n zeroes in C.

Note: Rouche’s theorem follows from the Argument Principle — Note that ∆γ(arg(f(z)+

g(z))) =change in argument of f(z)+g(z) as z moves along γ = ∆γ arg f(z)+∆γ arg(1+ g(z)
f(z)

)

as f(z) 6= 0 along γ. But ∆γ arg(1 + g(z)
f(z)

) = 0 because | g(z)
f(z)
| < 1 and therefore g(z)

f(z)
continues

to lie in the disc |w − 1| < 1 as z moves on γ i.e. does not go around the origin.

Question 2(b) By using the residue theorem, evaluate∫ ∞
0

loge(x
2 + 1)

x2 + 1
dx

Solution.

Let f(z) =
log(z + i)

1 + z2
and we consider

log(z + i) in C − {z | z = iy, y ≤ −1},
where it is single-valued. Let γ be the con-
tour consisting of the line joining (−R, 0) and
(R, 0) and Γ, which is the arc of the circle of
radius R and center (0, 0) lying in the upper
half plane. γ is oriented counter-clockwise.

Γ

(R, 0)(−R, 0) (0, 0)
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Clearly f(z) has a simple pole at z = i in the upper half plane. The residue at z = i is

lim
z→i

(z + i) log(z + i)

1 + z2
=

log 2i

2i
=

1

2i
log 2e

πi
2 =

1

2i

[
log 2 + i

π

2

]
=
π

4
− 1

2
i log 2

Thus by Cauchy’s residue theorem

lim
R→∞

∫
γ

log(z + i)

1 + z2
= lim

R→∞

∫
Γ

log(z + i)

1 + z2
+

∫ ∞
−∞

log(x+ i)

1 + x2
dx = 2πi

[π
4
− 1

2
i log 2

]
as z = x on the real axis.

We shall now show that lim
R→∞

∫
Γ

log(z + i)

1 + z2
= 0. On Γ, z = Reiθ, so∣∣∣∣∫

Γ

log(z + i)

1 + z2

∣∣∣∣ =

∣∣∣∣∫ π

0

log(Reiθ + i)Rieiθ

R2e2iθ + 1
dθ

∣∣∣∣
Now |R2e2iθ + 1| ≥ R2 − 1, log(Reiθ + i) = logReiθ + log(1 + i

Reiθ
). Clearly | logReiθ| =

| logR + iθ| ≤ logR + π and therefore∣∣∣∣∫
Γ

log(z + i)

1 + z2

∣∣∣∣ ≤ ∫ π

0

(π + logR)R

R2 − 1
dθ +

∫ π

0

R| log(1 + i
Reiθ

)|
R2 − 1

dθ

Since
(π + logR)R

R2 − 1
→ 0 and

R| log(1+ i

Reiθ
)|

R2−1
→ 0 asR→∞, it follows that lim

R→∞

∫
Γ

log(z + i)

1 + z2
=

0.
Thus ∫ ∞

−∞

log(x+ i)

1 + x2
dx = π log 2 + i

π2

2

Equating real and imaginary parts, we get∫ ∞
0

log(1 + x2)

1 + x2
dx =

1

2

∫ ∞
−∞

log(1 + x2)

1 + x2
dx =

1

2

∫ ∞
−∞

log(x+ i) + log(x− i)
1 + x2

dx =
1

2
[2π log 2] = π log 2

Question 2(c) Find the Laurent expansion of f(z) = (z − 3) sin
( 1

z + 2

)
about the singu-

larity z = −2. Specify the region of convergence and the nature of the singularity at z = −2.

Solution. It is well known that

sin
( 1

z + 2

)
=

∞∑
k=1

(−1)k−1

(2k − 1)!

( 1

z + 2

)2k−1

⇒ (z − 3) sin
( 1

z + 2

)
= (z + 2) sin

( 1

z + 2

)
− 5 sin

( 1

z + 2

)
= (z + 2)

∞∑
k=1

(−1)k−1

(2k − 1)!

( 1

z + 2

)2k−1

− 5
∞∑
k=1

(−1)k−1

(2k − 1)!

( 1

z + 2

)2k−1

=
∞∑
k=0

ak
(z + 2)k

, a2k−2 =
(−1)k−1

(2k − 1)!
, a2k−1 =

5(−1)k−1

(2k − 1)!

5
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.



The region of convergence of the series is 0 < |z + 2| < ∞. The Laurent expansion shows
that the function has an essential singularity at z = −2 — this also follows from the fact
that limz→0 sin 1

z
does not exist.
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