
UPSC Civil Services Main 1999 - Mathematics
Complex Analysis

Question 1(a) Examine the nature of the function

f(z) =
x2y5(x+ iy)

x4 + y10
, z 6= 0, f(0) = 0

in a region including the origin and hence show that the Cauchy-Riemann equations are
satisfied at the origin, but f(z) is not analytic there.

Solution.

u(x, y) = Re f(z) =

{
x3y5

x4+y10
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

v(x, y) = Im f(z) =

{
x2y6

x4+y10
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Now
u(x, 0)− u(0, 0)

x
= 0 =

v(0, y)− v(0, 0)

y
, therefore ux(0, 0) = vy(0, 0) = 0. Similarly

uy(0, 0) = 0 = −vx(0, 0). Thus the Cauchy-Riemann equations are satisfied at (0, 0).

However f(z) is not analytic at (0, 0) because lim
z→0

f(z)− f(0)

z
= lim

z→0

x2y5

x4 + y10
does not

exist — when we take y5 = mx2, then lim
z→0

f(z)− f(0)

z
=

m

1 +m2
which is different for

different values of m.
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Additional notes: Let z 6= 0. It can be calculated that

∂u

∂x
=

3x2y15 − x6y5

(x4 + y10)2

∂v

∂y
=
−4x2y15 + 6x6y5

(x4 + y10)2

∂v

∂x
=

2xy16 − 2x5y6

(x4 + y10)2

∂u

∂y
=

5x7y4 − 5x3y14

(x4 + y10)2

Now ∂u
∂x

= ∂v
∂y
⇔ 3x2y15 − x6y5 = −4x2y15 + 6x6y5 ⇔ x2y15 = x6y5 ⇔ x4 = y10 or x = 0 or

y = 0.
Also, ∂u

∂y
= − ∂v

∂x
when x4 = y10 or x = 0 or y = 0. Thus the Cauchy-Riemann equations

are satisfied at all those z for which x4 = y10 or x = 0 or y = 0. But f(z) is not analytic at
any of these points because f(z) is not differentiable in any neighborhood of these points,
as we can find points in every neighborhood which are not of this kind, so there are no
neighborhoods in which the Cauchy Riemann equations are satisfied everywhere.

Question 1(b) For the function f(z) =
−1

z2 − 3z + 2
, find the Laurent series for the domain

(i) 1 < |z| < 2 (ii) |z| > 2.

Show further that

∮
C

f(z) dz = 0 where C is any closed contour enclosing the points z = 1

and z = 2.

Solution. f(z) =
1

z − 1
− 1

z − 2
(i) 1 < |z| < 2⇒ |1

z
| < 1, | z

2
| < 1.

f(z) =
1

z

(
1− 1

z

)−1

+
1

2

(
1− z

2

)−1

=
1

z

∞∑
n=0

1

zn
+

1

2

∞∑
n=0

zn

2n

=
∞∑
n=1

1

zn
+
∞∑
n=0

zn

2n+1

(ii) |z| > 2⇒ |1
z
| < 1, |2

z
| < 1

f(z) =
1

z

(
1− 1

z

)−1

− 1

z

(
1− 2

z

)−1

=
1

z

∞∑
n=0

1

zn
− 1

z

∞∑
n=0

2n

zn

=
∞∑
n=0

1− 2n

zn+1
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∮
C

f(z) dz =

∮
C

( 1

z − 1
− 1

z − 2

)
dz

= 2πi
[
residue of 1

z−1
at z = 1− residue of 1

z−2
at z = 2

]
= 2πi[1− 1] = 0

Question 1(c) Show that the transformation w =
2z + 3

z − 4
transforms the circle x2+y2−4x =

0 into the straight line 4u+ 3 = 0 where w = u+ iv.

Solution. The point z = 4 goes to the point at ∞, showing that the given circle 0 =
x2 + y2 − 4x = zz − 4( z+z

2
) = zz − 2z − 2z = 0 is mapped onto a line, as z = 4 lies on it.

Now zw−4w = 2z+3⇒ zw−2z = 3+4w ⇒ z =
3 + 4w

w − 2
. Thus the circle zz−2z−2z = 0

goes to

0 =
3 + 4w

w − 2

3 + 4w

w − 2
− 2

3 + 4w

w − 2
− 2

3 + 4w

w − 2
= 0

⇒ 0 = 9 + 12w + 12w + 16ww − 2(3 + 4w)(w − 2)− 2(3 + 4w)(w − 2)

⇒ 0 = 9 + 12w + 12w + 16ww − 6w + 12 + 16w − 8ww − 6w + 12 + 16w − 8ww

= 33 + 22w + 22w

0 = 2(w + w) + 3

Thus 4u+ 3 = 0, as required.

Alternate solution: The given circle is |z − 2| = 2 ⇒ z = 2 + 2eiθ. Substituting in
transformation expression,

w =
2z + 3

z − 4
=

4 + 4eiθ + 3

2 + 2eiθ − 4
=

7 + 4eiθ

2(eiθ − 1)
=

(7 + 4eiθ)(e−iθ − 1)

2(eiθ − 1)(e−iθ − 1)

=
7e−iθ − 4eiθ − 3

2(2− eiθ − e−iθ)
=

7(cos θ − i sin θ)− 4(cos θ + i sin θ)− 3

2(2− 2 cos θ)

=
3 cos θ − 3− 11i sin θ

4(1− cos θ)
= −3

4
− i 11 sin θ

4(1− cos θ)

Thus u = −3
4
⇒ 4u + 3 = 0, hence all points on the circle |z − 2| = 2 are mapped onto the

line 4u+ 3 = 0.

Question 2(a) Using the Residue Theorem show that∫ ∞
−∞

x sin ax

x4 + 4
dx =

π

2
e−a sin a (a > 0)

Solution.
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We consider I =

∫
γ

f(z) dz where f(z) =

zeiaz

z4 + 4
and the contour γ consists of Γ a semi-

circle of radius R with center (0, 0) lying in
the upper half plane bounded by the real axis

as shown.

Γ

(R, 0)(−R, 0) (0, 0)

Thus by Cauchy’s residue theorem,

∫
γ

f(z) dz = 2πi(sum of residues at poles of f(z) inside

γ).

Clearly f(z) has simple poles at z4 = 4e(2n+1)πi for n = 0, 1, 2, 3, or z =
√

2e
πi
4 ,
√

2e
3πi
4 ,√

2e
5πi
4 ,
√

2e
7πi
4 . Out of these only the poles

√
2e

πi
4 ,
√

2e
3πi
4 lie inside γ.

Residue at
√

2e
πi
4 is

(
zeiaz

d
dz

(z4 + 4)

)
at z =

√
2e

πi
4 , which is

αeiaα

4α3
where α =

√
2e

πi
4 = 1+i.

Residue at
√

2e
3πi
4 is

eiaβ

4β2
where β =

√
2e

3πi
4 = −1 + i.

Sum of these residues is

1

4

[eiaα
α2

+
eiaβ

β2

]
=

1

4

[eia(1+i)

2i
+
eia(−1+i)

(−2i)

]
=

e−a

8i

[
eia − e−ia

]
=
e−a sin a

4

Thus

∫
γ

zeiaz dz

z4 + 4
= 2πi

e−a sin a

4
. Now

∣∣∣∣∫
Γ

zeiaz dz

z4 + 4

∣∣∣∣ =

∣∣∣∣∫ π

0

ReiθeiaRe
iθ

z4 + 4
iReiθ dθ

∣∣∣∣ ≤ R2

R4 − 4

∫ π

0

e−aR sin θ dθ ≤ πR2

R4 − 4

because |z4 + 4| ≥ |z4| − 4 = R4 − 4 on Γ, and e−aR sin θ ≤ 1 as sin θ ≥ 0 on [0, π]. Thus∫
Γ
f(z) dz → 0 as R→∞. Thus∫ ∞

−∞

xeiax

x4 + 4
dx = lim

R→∞

∫
γ

zeiaz

z4 + 4
dz =

e−a sin a

4
2πi

Taking the imaginary parts of both sides, we get∫ ∞
−∞

x sin ax

x4 + 4
dx =

πe−a sin a

2

as required.
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Question 2(b) The function f(z) has a double pole at z = 0 with residue 2, a simple pole
at z = 1 with residue 2, is analytic at all other finite points of the plane and is bounded as
|z| → ∞. If f(2) = 5 and f(−1) = 2, find f(z).

Solution. Since f(z) has only poles as singularities in the extended complex plane, it is
well known that f(z) has to be a rational function. Since f(z) has a double pole at z = 0

and a simple pole at z = 1, it has to be of the form f(z) =
φ(z)

z2(z − 1)
. where φ(z) is a

polynomial such that φ(0) 6= 0, φ(1) 6= 0. Moreover degree of φ(z) is ≤ 3 as we are given
that f(z) is bounded as z →∞. Let φ(z) = a0 + a1z + a2z

2 + a3z
3. Then

f(2) = 5 ⇒ a0 + 2a1 + 4a2 + 8a3

4
= 5 (1)

f(−1) = 2 ⇒ a0 − a1 + a2 − a3

−2
= 2 (2)

Residue of f(z) at z = 1 is lim
z→1

(z − 1)φ(z)

z2(z − 1)
= φ(1). This value is given to be 2, so

a0 + a1 + a2 + a3 = 2 (3)

Residue of f(z) at z = 0 is given by
1

1!

d

dz

(
φ(z)

z − 1

)
at z = 0, or

(z − 1)(φ′(z))− φ(z)

(z − 1)2
=

−a1 − a0. Since this is given to be 2,

−a0 − a1 = 2 (4)

Adding (2), (3) we get 2a0 + 2a2 = −2 ⇒ a2 = −1 − a0. Substituting a2 = −1 − a0, a1 =
−a0−2 in (1), we get a0−2a0−4−4−4a0+8a3 = 20⇒ 8a3 = 5a0+28. Substituting in (3), we
have a0−a0−2−1−a0 + 5a0+28

8
= 2⇒ −3a0 +28 = 40⇒ a0 = −4⇒ a1 = 2, a2 = 3, a3 = 1.

Hence f(z) =
−4 + 2z + 3z2 + z3

z2(z − 1)
is the desired function.

Note: If f(z) has only poles in C∪∞, then it is a rational function. If φ1(z), φ2(z), . . . , φr(z)
are principal parts of f(z) at the polesz1, z2, . . . , zr and ψ(z) is the principal part of f(z)
at ∞, then f(z) −

∑r
j=1 φj(z) − ψ(z) being bounded and analytic in C ∪ ∞ is constant

⇒ f(z) =
∑r

j=1 φj(z) + ψ(z) + C. Thus f(z) is a rational function, as each φj(z) is a ratio-
nal function and ψ(z) is a polynomial.

Question 2(c) What kind of singularities do the following functions have?

1.
1

1− ez
at z = 2πi.

2.
1

sin z − cos z
at z = π

4
.
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3.
cot πz

(z − a)2
at z = a and z =∞. What happens when a is an integer (including a = 0)?

Solution.

1. Clearly ez − 1 = ez−2πi − 1 = (z − 2πi) +
(z − 2πi)2

2!
+

(z − 2πi)3

3!
+ . . ., showing that

ez − 1 has a simple zero at z = 2πi. Thus the given function 1
1−ez has a simple pole at

z = 2πi. Now residue at z = 2πi is given by

lim
z→2πi

z − 2πi

1− ez
= −1

2. f(z) =
1

sin z − cos z
. We know that

sin z =
1√
2

+
(
z − π

4

) 1√
2
−
(
z − π

4

)2

2!

1√
2

+ . . .+ Higher powers of
(
z − π

4

)
cos z =

1√
2
−
(
z − π

4

) 1√
2
−
(
z − π

4

)2

2!

1√
2

+ . . .+ Higher powers of
(
z − π

4

)
⇒ sin z − cos z =

√
2
(
z − π

4

)
−
√

2

(
z − π

4

)3

3!
+ . . .+ Higher powers of

(
z − π

4

)
Since sin z − cos z has a simple zero at z =

π

4
, the given function

1

sin z − cos z
has a

simple pole at z =
π

4
.

Residue at z =
π

4
is given by lim

z→π
4

z − π
4

sin z − cos z
=

1√
2

.

3. f(z) =
cotπz

(z − a)2
. f(z) has a simple pole at each z = n, n ∈ Z, n 6= a, with residue

1
(n−a)2

. f(z) also has a pole at z = a, whose nature is as follows:

(a) a is not an integer and a 6= n+ 1
2
.

In this case, cos πa 6= 0, sin πa 6= 0 and therefore f(z) has a double pole at z = a.

(The residue at z = a is
d

dz
[(z − a)2f(z)]z=a = −π csc2 πa.)

(b) a is not an integer and a = n+ 1
2
.

In this case cosπz has a simple zero at a, and sinπz = ±1, therefore f(z) has a

simple pole at z = a. (The residue at z = a is lim
z→a

cosπz

z − a
1

sin πa
=
−π sin πa

sin πa
=

−π.)
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(c) a is an integer.

sin πz has a simple zero at z = a and cos πa 6= 0, then f(z) has a triple pole at
z = a. The residue in this case is −π

3
, because

sin πz = (−1)a
[
π(z − a)− π3 (z − a)3

3!
+ Higher powers of(z − a)

]
cos πz = (−1)a

[
1− π2 (z − a)2

2!
+ Higher powers of(z − a)

]
f(z) =

1

(z − a)2

1− π2 (z−a)2

2!
+ Higher powers of(z − a)

π(z − a)[1− π2 (z−a)2

3!
+ Higher powers of(z − a)]

=
1

π(z − a)3

[
1− π2 (z − a)2

2!
+ . . .

][
1 + π2 (z − a)2

3!
+ . . .

]
The coefficient of 1

z−a in the Laurent series of f(z) (formed by multiplying the

above series) is 1
π

[
−π2

2
+ π2

6

]
= −π

3
, which is the required residue.

(Note that the computation of residues was not required for this problem.)

Finally, f(z) has an essential singularity at∞, because f(z) has zeros at z = n+ 1
2
, a 6=

n+ 1
2

whose limit point is ∞.

7
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.


