UPSC Civil Services Main 2001 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Prove that the Riemann zeta function ζ defined by $\zeta(z)=\sum_{n=1}^{\infty} n^{-z}$ converges for $\operatorname{Re} z>1$ and converges uniformly for $\operatorname{Re} z>1+\epsilon$ where ϵ is arbitrarily small.

Solution.

$$
\left|\frac{1}{n^{z}}\right|=\left|\frac{1}{n^{x} \cdot n^{i y}}\right|=\left|\frac{1}{n^{x}}\right| \quad \because\left|\frac{1}{n^{i y}}\right|=\left|\frac{1}{e^{i y \log n}}\right|=1
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ converges for $x>1$, it follows that $\sum_{n=1}^{\infty} n^{-z}$ converges absolutely for $\operatorname{Re} z>1$. If $\operatorname{Re} z \geq 1+\epsilon$, then $\frac{1}{n^{x}} \leq \frac{1}{n^{1+\epsilon}}$ and

$$
\sum_{n=1}^{\infty}\left|n^{-z}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}}
$$

for $\operatorname{Re} z \geq 1+\epsilon$. Weierstrass' M-test gives that the given series converges uniformly and absolutely for $\operatorname{Re} z \geq 1+\epsilon$.

Question 2(a) Find the Laurent series for the function $e^{\frac{1}{z}}$ in $0<|z|<\infty$. Using the expansion show that

$$
\frac{1}{\pi} \int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=\frac{1}{n!}
$$

$n=1,2, \ldots$
Solution. Clearly $e^{\frac{1}{z}}$ is analytic in $0<|z|<\infty$ and satisfies requirements of Laurent's expansion, and we have

$$
\begin{equation*}
e^{\frac{1}{z}}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \text { where } a_{n}=\frac{1}{2 \pi i} \int_{|z|=1} \frac{e^{\frac{1}{z}}}{z^{n+1}} d z \tag{*}
\end{equation*}
$$

Note - $z=0$ is an essential singularity, therefore we have infinitely many terms with negative exponents. In the expression for a_{n} we could have taken any disc, we have taken $|z|=1$ for convenience.

Put $z=e^{i \theta}$ in (*), $d z=i e^{i \theta} d \theta$, we get

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{e^{\cos \theta-i \sin \theta}}{e^{i(n+1) \theta}} i e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta} e^{-i \sin \theta-i n \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta}[\cos (\sin \theta+n \theta)] d \theta-\frac{i}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta}[\sin (\sin \theta+n \theta)] d \theta
\end{aligned}
$$

Let $g(\theta)=e^{\cos \theta}[\sin (\sin \theta+n \theta)]$, then $g(2 \pi-\theta)=-e^{\cos \theta}[\sin (\sin \theta+n \theta)]=-g(\theta)$. Thus $\int_{0}^{2 \pi} e^{\cos \theta}[\sin (\sin \theta+n \theta)] d \theta=0$.

Thus $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta}[\cos (\sin \theta+n \theta)] d \theta$.
In particular, $a_{-n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta}[\cos (\sin \theta-n \theta)] d \theta$ for $n=1,2, \ldots$.
But we know that $e^{\frac{1}{z}}=1+\sum_{n=1}^{\infty} \frac{1}{n!z^{n}}$.
Therefore, comparing the two expansions we get for $n=1,2, \ldots$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta}[\cos (\sin \theta-n \theta)] d \theta=\frac{1}{n!}
$$

Since $e^{\cos 2 \pi-\theta} \cos (\sin (2 \pi-\theta)-n(2 \pi-\theta))=e^{\cos \theta}[\cos (\sin \theta-n \theta)]$, we can double the integral and halve the limit to obtain

$$
\frac{1}{\pi} \int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=\frac{1}{n!}
$$

Question 2(b) Show that $\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{\sqrt{2}}$.

Solution.

We take $f(z)=\frac{1}{1+z^{4}}$ and the contour γ consisting of Γ a semicircle of radius R with center $(0,0)$ lying in the upper half plane, and the line joining $(-R, 0)$ and $(R, 0)$.

For more information log on www.brijrbedu.org.

By Cauchy's residue theorem $\int_{\gamma} \frac{d z}{1+z^{4}}=2 \pi i$ (sum of residues at poles of $f(z)$ in the upper half plane).

Clearly $\frac{1}{1+z^{4}}$ has two simple poles at $z=e^{\frac{\pi i}{4}}$ and $z=e^{\frac{3 \pi i}{4}}$ inside the contour.
Residue at $z=e^{\frac{\pi i}{4}}$ is $\frac{1}{\frac{d\left(z^{4}+1\right)}{d z}}=\frac{1}{4 e^{\frac{3 \pi i}{4}}}$.
Residue at $z=e^{\frac{3 \pi i}{4}}$ is $\frac{1}{4 e^{\frac{9 \pi i}{4}}}=\frac{1}{4 e^{\frac{\pi i}{4}}}$.

$$
\begin{aligned}
\text { Sum of residues } & =\frac{1}{4}\left[\cos \frac{3 \pi}{4}-i \sin \frac{3 \pi}{4}+\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right] \\
& =\frac{1}{4}\left[-\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}+\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right] \\
& =-\frac{i}{4} \frac{2}{\sqrt{2}}=-\frac{i}{2 \sqrt{2}}
\end{aligned}
$$

Thus $\lim _{R \rightarrow \infty} \int_{\gamma} \frac{d z}{1+z^{4}}=2 \pi i \frac{-i}{2 \sqrt{2}}=\frac{\pi}{\sqrt{2}}$.
Now

$$
\left|\int_{\Gamma} \frac{d z}{1+z^{4}}\right| \leq \int_{0}^{\pi} \frac{R}{R^{4}-1} d \theta=\frac{\pi R}{R^{4}-1}
$$

on putting $z=R e^{i \theta}$ and using $\left|z^{4}+1\right| \geq R^{4}-1$ on Γ.
Thus $\int_{\Gamma} \frac{d z}{1+z^{4}} \rightarrow 0$ as $R \rightarrow \infty$. Consequently,

$$
\lim _{R \rightarrow \infty} \int_{\gamma} \frac{d z}{1+z^{4}}=\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{\sqrt{2}}
$$

as required.

