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Question 1(a) Prove that the Riemann zeta function ζ defined by ζ(z) =
∑∞

n=1 n
−z con-

verges for Re z > 1 and converges uniformly for Re z > 1 + ε where ε is arbitrarily small.

Solution. ∣∣∣∣ 1

nz

∣∣∣∣ =

∣∣∣∣ 1

nx · niy

∣∣∣∣ =

∣∣∣∣ 1

nx

∣∣∣∣ ∵

∣∣∣∣ 1

niy

∣∣∣∣ =

∣∣∣∣ 1

eiy logn

∣∣∣∣ = 1

Since
∞∑
n=1

1

nx
converges for x > 1, it follows that

∑∞
n=1 n

−z converges absolutely for Re z > 1.

If Re z ≥ 1 + ε, then 1
nx
≤ 1

n1+ε and

∞∑
n=1

|n−z| ≤
∞∑
n=1

1

n1+ε

for Re z ≥ 1 + ε. Weierstrass’ M-test gives that the given series converges uniformly and
absolutely for Re z ≥ 1 + ε.

Question 2(a) Find the Laurent series for the function e
1
z in 0 < |z| < ∞. Using the

expansion show that
1

π

∫ π

0

ecos θ cos(sin θ − nθ) dθ =
1

n!

n = 1, 2, . . ..

Solution. Clearly e
1
z is analytic in 0 < |z| < ∞ and satisfies requirements of Laurent’s

expansion, and we have

e
1
z =

∞∑
n=−∞

anz
n, where an =

1

2πi

∫
|z|=1

e
1
z

zn+1
dz (∗)
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Note — z = 0 is an essential singularity, therefore we have infinitely many terms with
negative exponents. In the expression for an we could have taken any disc, we have taken
|z| = 1 for convenience.

Put z = eiθ in (∗), dz = ieiθ dθ, we get

an =
1

2πi

∫ 2π

0

ecos θ−i sin θ

ei(n+1)θ
ieiθ dθ

=
1

2π

∫ 2π

0

ecos θe−i sin θ−inθ dθ

=
1

2π

∫ 2π

0

ecos θ[cos(sin θ + nθ)] dθ − i

2π

∫ 2π

0

ecos θ[sin(sin θ + nθ)] dθ

Let g(θ) = ecos θ[sin(sin θ + nθ)], then g(2π − θ) = −ecos θ[sin(sin θ + nθ)] = −g(θ). Thus∫ 2π

0

ecos θ[sin(sin θ + nθ)] dθ = 0.

Thus an =
1

2π

∫ 2π

0

ecos θ[cos(sin θ + nθ)] dθ.

In particular, a−n =
1

2π

∫ 2π

0

ecos θ[cos(sin θ − nθ)] dθ for n = 1, 2, . . ..

But we know that e
1
z = 1 +

∞∑
n=1

1

n!zn
.

Therefore, comparing the two expansions we get for n = 1, 2, . . .,

1

2π

∫ 2π

0

ecos θ[cos(sin θ − nθ)] dθ =
1

n!

Since ecos 2π−θ cos(sin(2π− θ)−n(2π− θ)) = ecos θ[cos(sin θ−nθ)], we can double the integral
and halve the limit to obtain

1

π

∫ π

0

ecos θ cos(sin θ − nθ) dθ =
1

n!

Question 2(b) Show that

∫ ∞
−∞

dx

1 + x4
=

π√
2

.

Solution.

We take f(z) = 1
1+z4

and the contour
γ consisting of Γ a semicircle of radius R
with center (0, 0) lying in the upper half
plane, and the line joining (−R, 0) and (R, 0).

Γ

(R, 0)(−R, 0) (0, 0)
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By Cauchy’s residue theorem

∫
γ

dz

1 + z4
= 2πi(sum of residues at poles of f(z) in the upper

half plane).

Clearly 1
1+z4

has two simple poles at z = e
πi
4 and z = e

3πi
4 inside the contour.

Residue at z = e
πi
4 is

1
d(z4+1)
dz

=
1

4e
3πi
4

.

Residue at z = e
3πi
4 is

1

4e
9πi
4

=
1

4e
πi
4

.

Sum of residues =
1

4

[
cos

3π

4
− i sin

3π

4
+ cos

π

4
− i sin

π

4

]
=

1

4

[
− cos

π

4
− i sin

π

4
+ cos

π

4
− i sin

π

4

]
= − i

4

2√
2

= − i

2
√

2

Thus lim
R→∞

∫
γ

dz

1 + z4
= 2πi

−i
2
√

2
=

π√
2

.

Now ∣∣∣∣∫
Γ

dz

1 + z4

∣∣∣∣ ≤ ∫ π

0

R

R4 − 1
dθ =

πR

R4 − 1

on putting z = Reiθ and using |z4 + 1| ≥ R4 − 1 on Γ.

Thus

∫
Γ

dz

1 + z4
→ 0 as R→∞. Consequently,

lim
R→∞

∫
γ

dz

1 + z4
=

∫ ∞
−∞

dx

1 + x4
=

π√
2

as required.
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