UPSC Civil Services Main 2002 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) Suppose that f and g are two analytic functions on the set \mathbb{C} of all complex numbers with $f(\frac{1}{n}) = g(\frac{1}{n})$ for n = 1, 2, 3, ..., then show that f(z) = g(z) for all $z \in \mathbb{C}$.

Solution. Let G(z) = f(z) - g(z), then $G(\frac{1}{n}) = 0$ for n = 1, 2, ... We shall show that $G(z) \equiv 0$ for $z \in \mathbb{C}$ which would prove the result.

Let $G(z) = \sum_{n=0}^{\infty} a_n z^n$ be the power series of G(z) with center 0 and radius of convergence R, clearly R > 0. We shall now prove that $a_n = 0$ for every n.

If $a_n \neq 0$ for some n, let a_k be the first non-zero coefficient. Then

$$G(z) = z^{k}(a_{k} + a_{k+1}z + \ldots) = z^{k}H(z)$$

Clearly H(z) is analytic in |z| < R, and $H(0) \neq 0$. We now claim that $H(z) \neq 0$ in a neighborhood $|z| < \delta$ of 0. Let $\epsilon = \frac{|H(0)|}{2}$, then continuity of H(z) at z = 0 implies that there exists a $\delta > 0$ such that $|z| < \delta \Rightarrow |H(z) - H(0)| < \epsilon$ or $|H(0)| - \epsilon < |H(z)| < |H(0)| + \epsilon$ for $|z| < \delta$. Thus $|H(z)| > \frac{|H(0)|}{2} > 0$ for $|z| < \delta$. Consequently, $G(z) \neq 0$ for any z in $0 < |z| < \delta$. But this is not possible, as $|z| < \delta$ contains all but finitely many $\frac{1}{n}$, at which G(z) vanishes. Thus our assumption that $a_n \neq 0$ for some n is false, thus $G(z) \equiv 0$ in |z| < R.

Let z' be any point in \mathbb{C} , and let $r(t), a \leq t \leq b$ be a continuous curve joining 0 and z'. Using uniform continuity of r(t), we get a partition $a = t_0 < t_1 < \ldots < t_n = b$ of [a, b] such that $r(t_0) = 0, r(t_1) = z_1, \ldots, r(t_n) = r(b) = z'$, and $|z_j - z_{j-1}| < R$.

Now the disc $K_0 = |z - 0| < R$ contains z_1 , the center of disc $K_1 = |z - z_1| < R$. Since $G(z_1) = 0$ as $z_1 \in K_0 \cap K_1$, and $K_0 \cap K_1$ contains a sequence of points y_n such that $y_n \to z_1$ and $G(y_n) = 0$, we can prove as before that $G(z) \equiv 0$ in K_1 . Proceeding in this way, in n steps we get $G(z) \equiv 0$ in K_n , or G(z') = 0. Since z' is an arbitrary point of \mathbb{C} , we get $G(z) \equiv 0$ in \mathbb{C} .

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012. Question 2(a) Show that when 0 < |z-1| < 2, the function $f(z) = \frac{z}{(z-1)(z-3)}$ has the Laurent series expansion in powers of (z-1) as

$$\frac{-1}{2(z-1)} - 3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}}$$

Solution. Let $\zeta = z - 1$, so that

$$f(z) = \frac{z}{(z-1)(z-3)} = \frac{\zeta+1}{\zeta(\zeta-2)} = -\frac{1}{2\zeta} + \frac{3}{2(\zeta-2)}$$

Now for $0 < |\zeta| < 2$, $\frac{3}{2(\zeta - 2)} = \frac{3}{2} \cdot \frac{-1}{2} \cdot \left(1 - \frac{\zeta}{2}\right)^{-1}$ and $\left|\frac{\zeta}{2}\right| < 1$. Consequently,

$$\frac{3}{2(\zeta - 2)} = -\frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{\zeta}{2}\right)^n$$

and

$$f(z) = -\frac{1}{2\zeta} - \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{\zeta}{2}\right)^n = -\frac{1}{2(z-1)} - 3 \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}}$$

which is the desired Laurent series expansion.

Question 2(b) Establish by contour integration

$$\int_{0}^{\infty} \frac{\cos(ax)}{x^{2}+1} \, dx = \frac{\pi}{2} e^{-a}, \text{ where } a \ge 0$$

Solution. Let I be the given integral. Put ax = t, so that

$$I = \int_0^\infty \frac{\cos t}{\frac{t^2}{a^2} + 1} \frac{dt}{a} = a \int_0^\infty \frac{\cos t}{t^2 + a^2} dt$$

We shall now prove that $\int_0^\infty \frac{\cos t}{t^2 + a^2} dt = \frac{\pi}{2a} e^{-a}$, which will show that $I = \frac{\pi}{2} e^{-a}$ as required.

Clearly $\frac{\cos x}{x^2 + a^2}$ is the real part of $\frac{e^{ix}}{x^2 + a^2}$. We consider the integral $\int_{\gamma} f(z) dz$ where $f(z) = \frac{e^{iz}}{z^2 + a^2}$ and γ is the contour consisting of the line joining (-R, 0) and (R, 0) and Γ , which is the arc of the circle of radius R and center (0, 0) lying in the upper half plane.

For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012. Clearly on Γ , if we put $z = Re^{i\theta}$, then $0 \le \theta \le \pi$ and

$$\left| \int_{\Gamma} \frac{e^{iz} dz}{z^2 + a^2} \right| = \left| \int_{0}^{\pi} \frac{Rie^{i\theta} e^{iRe^{i\theta}} d\theta}{R^2 e^{2i\theta} + a^2} \right| \le \int_{0}^{\pi} \left| \frac{Rie^{i\theta} e^{iRe^{i\theta}}}{R^2 e^{2i\theta} + a^2} \right| d\theta$$

But $|e^{iRe^{i\theta}}| = |e^{iR\cos\theta}e^{-R\sin\theta}| = e^{-R\sin\theta} \le 1$ as $\sin\theta \ge 0$ for $0 \le \theta \le \pi$. $|z^2 + a^2| \ge |z|^2 - a^2 = 2a^2$ $R^2 - a^2$. Therefore

$$\left| \int_{\Gamma} \frac{e^{iz} \, dz}{z^2 + a^2} \right| \le \int_0^{\pi} \frac{R}{R^2 - a^2} \, d\theta = \frac{\pi R}{R^2 - a^2}$$

Hence $\int_{\Gamma} \frac{e^{iz} dz}{z^2 + a^2} \to 0$ as $R \to \infty$. Now $\int_{\gamma}^{\gamma} \frac{e^{iz} dz}{z^2 + a^2} = 2\pi i (\text{sum of residues at poles inside } \gamma).$

But the only pole in the upper half plane is z = ia, (a > 0) and the residue at z = ia is $\frac{e^{i(ia)}}{2ia} = \frac{e^{-a}}{2ia}$. Thus

$$-\frac{1}{2ia}$$
 $-\frac{1}{2ia}$

$$\lim_{R \to \infty} \int_{\gamma} \frac{e^{iz} dz}{z^2 + a^2} = \int_{-\infty}^{\infty} \frac{e^{ix} dx}{x^2 + a^2} = 2\pi i \cdot \frac{e^{-a}}{2ia} = \frac{\pi e^{-a}}{a}$$
$$\implies \int_{-\infty}^{\infty} \frac{\cos x dx}{x^2 + a^2} = \frac{\pi e^{-a}}{a}, \int_{-\infty}^{\infty} \frac{\sin x dx}{x^2 + a^2} = 0$$
$$\implies \int_{0}^{\infty} \frac{\cos x dx}{x^2 + a^2} = \frac{\pi e^{-a}}{2a} \quad \because \cos x = \cos(-x)$$

This completes the proof.

3 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.