UPSC Civil Services Main 2003 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Question 1(a) Determine all the bilinear transformations which transform the unit circle $|z| \leq 1$ into the unit circle $|w| \leq 1$.

Solution. Let the required transformation be $w=\frac{a z+b}{c z+d}$. Clearly $z=-\frac{b}{a} \Rightarrow w=0$ and $z=-\frac{d}{c} \Rightarrow w=\infty$. Since $0, \infty$ are inverse points with respect to the circle $|w|=1$, then $-\frac{b}{a},-\frac{d}{c}$ are inverse points with respect to the circle $|z|=1$ (note that R, S different from 0 are said to be inverse points with respect to $|z|=1$ if O, R, S are collinear and $O R \cdot O S=1$). Thus if we set $-\frac{b}{a}=\alpha$, then $-\frac{d}{c}=\frac{1}{\bar{\alpha}}$ and we get

$$
w=\frac{a}{c} \frac{z-\alpha}{z-\frac{1}{\bar{\alpha}}}=\frac{a \bar{\alpha}}{c} \frac{z-\alpha}{\bar{\alpha} z-1}
$$

Since $|z|=1$ maps onto $|w|=1$, we take $z=1$ to get $\left|\frac{a \bar{\alpha}}{c} \frac{1-\alpha}{\bar{\alpha}-1}\right|=1$. But $|1-\alpha|=|1-\bar{\alpha}|$, therefore $\left|\frac{a \bar{\alpha}}{c}\right|=1$. Let $\frac{a \bar{\alpha}}{c}=e^{i \theta}, \theta \in \mathbb{R}$, so that

$$
w=e^{i \theta} \frac{z-\alpha}{\bar{\alpha} z-1}
$$

We now check that when $|z|=1$, we have $|w|=1$.

$$
\begin{aligned}
|w| & =\left|e^{i \theta}\right|\left|\frac{z-\alpha}{\bar{\alpha} z-1}\right| \\
& =|\bar{z}|\left|\frac{z-\alpha}{\bar{\alpha}-\bar{z}}\right| \quad(\because z \bar{z}=1) \\
& =1 \quad(\because|z-\alpha|=|\bar{\alpha}-\bar{z}|)
\end{aligned}
$$

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Now let $|z|<1$. Then

$$
\begin{aligned}
w \bar{w}-1 & =e^{i \theta} \frac{z-\alpha}{\bar{\alpha} z-1} \cdot e^{-i \theta} \frac{\bar{z}-\bar{\alpha}}{\alpha \bar{z}-1}-1 \\
& =\frac{z \bar{z}-\bar{\alpha} z-\alpha \bar{z}+\alpha \bar{\alpha}}{(\bar{\alpha} z-1)(\alpha \bar{z}-1)}-1 \\
& =\frac{z \bar{z}-\bar{\alpha} z-\alpha \bar{z}+\alpha \bar{\alpha}-\alpha \bar{\alpha} z \bar{z}+\bar{\alpha} z+\alpha \bar{z}-1}{(\bar{\alpha} z-1)(\alpha \bar{z}-1)} \\
& =\frac{z \bar{z}+\alpha \bar{\alpha}-\alpha \bar{\alpha} z \bar{z}-1}{|\bar{\alpha} z-1|^{2}} \\
& =\frac{(z \bar{z}-1)(1-\alpha \bar{\alpha})}{|\bar{\alpha} z-1|^{2}}
\end{aligned}
$$

Thus if $|\alpha|<1$, then $|w|<1$. This shows that the transformation

$$
w=e^{i \theta} \frac{z-\alpha}{\bar{\alpha} z-1}, \theta \in \mathbb{R},|\alpha|<1
$$

maps the interior of $|z|=1$ onto the interior of $|w|=1$ and the boundary of $|z|=1$ onto the boundary of $|w|=1$. Thus all bilinear transforms which map $|z| \leq 1$ onto $|w| \leq 1$ are given by

$$
w=e^{i \theta} \frac{z-\alpha}{\bar{\alpha} z-1}, \theta \in \mathbb{R},|\alpha|<1
$$

Note: If $|\alpha|>1$, then the interior of $|z|=1$ would map onto the exterior of $|w|=1$. The boundary will map onto the boundary, as before.

Question 2(a) 1. Discuss the transformation $W=\left(\frac{z-i c}{z+i c}\right)^{2}$, c real, showing that the upper half of the W-plane corresponds to the interior of a semicircle lying to the right of the imaginary axis in the z-plane.
2. Using the method of contour integration prove that

$$
\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{\sqrt{1+a^{2}}} \quad(a>0)
$$

Solution.

1. We need to assume $c>0$ as otherwise the question is incorrect.

Let $W=U+i V$, so that

$$
\begin{aligned}
U+i V & =\left(\frac{x+i(y-c)}{x+i(y+c)}\right)^{2} \\
& =\left(\frac{(x+i(y-c))(x-i(y+c))}{x^{2}+(y+c)^{2}}\right)^{2} \\
& =\left(\frac{x^{2}+y^{2}-c^{2}-2 i c x}{x^{2}+(y+c)^{2}}\right)^{2} \\
& =\frac{\left(x^{2}+y^{2}-c^{2}\right)^{2}-4 c^{2} x^{2}-4 i c x\left(x^{2}+y^{2}-c^{2}\right)}{\left[x^{2}+(y+c)^{2}\right]^{2}} \\
\Rightarrow U & =\frac{\left(x^{2}+y^{2}-c^{2}\right)^{2}-4 c^{2} x^{2}}{\left[x^{2}+(y+c)^{2}\right]^{2}} \\
V & =\frac{-4 c x\left(x^{2}+y^{2}-c^{2}\right)}{\left[x^{2}+(y+c)^{2}\right]^{2}}=\frac{4 c x\left(c^{2}-x^{2}-y^{2}\right)}{\left[x^{2}+(y+c)^{2}\right]^{2}}
\end{aligned}
$$

Thus if z belongs to the interior of the semicircle given by $x^{2}+y^{2}=c^{2}, x \geq 0$, then $V>0$, which means that $U+i V$ is in the upper half plane.
For any point on the line $x=0$, we have $V=0$ and $U=\frac{\left(y^{2}-c^{2}\right)^{2}}{(y+c)^{4}}=\left(\frac{y-c}{y+c}\right)^{2}$. Clearly when y changes from $-c$ to c, U changes from ∞ to 0 .
As z moves over the circle $x^{2}+y^{2}=c^{2}$, we have $V=0$ and

$$
U=\frac{-4 c^{2} x^{2}}{\left(x^{2}+(y+c)^{2}\right)^{2}}=\frac{-4 c^{2} x^{2}}{\left(x^{2}+y^{2}+c^{2}+2 y c\right)^{2}}=\frac{-4 c^{2} x^{2}}{\left(2 c^{2}+2 y c\right)^{2}}=\frac{-x^{2}}{(y+c)^{2}}=-\frac{c^{2}-y^{2}}{(y+c)^{2}}=-\frac{c-y}{c+y}
$$

Let $y=c \cos \theta$, then $U=-\frac{1-\cos \theta}{1+\cos \theta}=-\tan ^{2} \frac{\theta}{2}$. When y moves from $-c$ to c, i.e. z traverses the boundary of the semicircle, θ varies from π to 0 , and U varies from $-\infty$ to 0 . Thus the boundary of the semicircle $x^{2}+y^{2}=c^{2}$ with $x \geq 0$ is mapped onto the U-axis. Hence the semicircle $x^{2}+y^{2}=c^{2}$ with $x \geq 0$ is mapped onto $W=U+i V$ with $V \geq 0$.
2. Let the given integral be I. Then

$$
I=\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}=\int_{0}^{\pi} \frac{2 a d \theta}{2 a^{2}+(1-\cos 2 \theta)}=\int_{0}^{2 \pi} \frac{a d \phi}{2 a^{2}+1-\cos \phi}
$$

on putting $2 \theta=\phi$. We now let $z=e^{i \phi}$ to obtain

$$
I=\int_{|z|=1} \frac{a d z}{i z\left(2 a^{2}+1-\frac{1}{2}\left(z+\frac{1}{z}\right)\right)}=\frac{1}{i} \int_{|z|=1} \frac{2 a d z}{2\left(2 a^{2}+1\right) z-\left(z^{2}+1\right)}=\int_{|z|=1} \frac{2 a i d z}{z^{2}-2\left(2 a^{2}+1\right) z+1}
$$

Now $z^{2}-2\left(2 a^{2}+1\right) z+1=0 \Rightarrow z=2 a^{2}+1 \pm \sqrt{\left(2 a^{2}+1\right)^{2}-1}=2 a^{2}+1 \pm 2 a \sqrt{a^{2}+1}$. Clearly $\left|2 a^{2}+1+2 a \sqrt{a^{2}+1}\right|>1$ showing that $\left|2 a^{2}+1-2 a \sqrt{a^{2}+1}\right|<1$ because the product of the roots is 1 . Thus the only pole inside $|z|=1$ is $z=2 a^{2}+1-2 a \sqrt{a^{2}+1}$.
Residue at $z=2 a^{2}+1-2 a \sqrt{a^{2}+1}$ is $\frac{1}{\left(2 a^{2}+1-2 a \sqrt{a^{2}+1}\right)-\left(2 a^{2}+1+2 a \sqrt{a^{2}+1}\right)}=$ $\frac{1}{-4 a \sqrt{a^{2}+1}}$.
Thus $I=2 a i \cdot 2 \pi i \cdot \frac{1}{-4 a \sqrt{a^{2}+1}}=\frac{\pi}{\sqrt{a^{2}+1}}$.

