UPSC Civil Services Main 2005 - Mathematics Complex Analysis

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

Paper II
Question 1(a) If $f(z)=u+i v$ is an analytic function of the complex variable z and $u-v=e^{x}(\cos y-\sin y)$, determine $f(z)$ in terms of z.

Solution. Let $F(z)=(1+i) f(z)=(1+i)(u+i v)=(u-v)+i(u+v)$. Now

$$
\frac{\partial^{2}(u-v)}{\partial x^{2}}+\frac{\partial^{2}(u-v)}{\partial y^{2}}=e^{x}(\cos y-\sin y)+e^{x}(-\cos y+\sin y)=0
$$

Let $F(z)=U+i V$, where $U=u-v$ is harmonic. If $f(z)$ is analytic, then so is $F(z)$ and

$$
\frac{d F}{d z}=\frac{\partial U}{\partial x}+i \frac{\partial V}{\partial x}=\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y}
$$

as $\frac{\partial V}{\partial x}=-\frac{\partial U}{\partial y}$ by the Cauchy-Riemann equations. Thus

$$
\begin{aligned}
F^{\prime}(z) & =e^{x}(\cos y-\sin y)-i e^{x}(-\sin y-\cos y) \\
& =e^{x}(\cos y+i \sin y)+i e^{x}(\cos y+i \sin y) \\
& =(1+i) e^{x} \cdot e^{i y}=(1+i) e^{z}
\end{aligned}
$$

Thus $F(z)=(1+i) e^{z}$ and $f(z)=e^{z}$, which is the required function.

Question 2(a) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent's series which is valid for (i) $1<|z|<3$ (ii) $|z|>3$ and (iii) $|z|<1$.
Solution. Clearly $f(z)=\frac{1}{2}\left(\frac{1}{z+1}-\frac{1}{z+3}\right)$
(i) $1<|z|<3$. In this region

$$
f(z)=\frac{1}{2}\left[\frac{1}{z}\left(1+\frac{1}{z}\right)^{-1}-\frac{1}{3}\left(1+\frac{z}{3}\right)^{-1}\right]
$$

Since $\left|\frac{1}{z}\right|<1$ and $\left|\frac{z}{3}\right|<1$, we get

$$
\begin{aligned}
f(z) & =\frac{1}{2 z} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{z^{n}}-\frac{1}{6} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z}{3}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} \frac{1}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} \frac{z^{n}}{3^{n+1}}
\end{aligned}
$$

as Laurent's expansion in the region $1<|z|<3$.
(ii) $|z|>3$. In this region

$$
f(z)=\frac{1}{2 z}\left[\left(1+\frac{1}{z}\right)^{-1}-\left(1+\frac{3}{z}\right)^{-1}\right]
$$

Now $\left|\frac{1}{z}\right|<1$ and $\left|\frac{3}{z}\right|<1$, so we get

$$
\begin{aligned}
f(z) & =\frac{1}{2 z} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{z^{n}}-\frac{1}{2 z} \sum_{n=0}^{\infty}(-1)^{n} \frac{3^{n}}{z^{n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} \frac{1-3^{n}}{z^{n+1}}
\end{aligned}
$$

as Laurent's expansion in the region $|z|>3$. This is Taylor's expansion of $f(z)$ around ∞.
(iii) $|z|<1$. In this region

$$
f(z)=\frac{1}{2}\left[(1+z)^{-1}-\frac{1}{3}\left(1+\frac{z}{3}\right)^{-1}\right]
$$

Now $|z|<1,\left|\frac{z}{3}\right|<1$, so we get

$$
\begin{aligned}
f(z) & =\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} z^{n}-\frac{1}{6} \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{3^{n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2}\left(1-\frac{1}{3^{n+1}}\right) z^{n}
\end{aligned}
$$

as Laurent's expansion valid in $|z|<1$. This has no negative powers of z as $f(z)$ is analytic in $|z|<1$.

