UPSC Civil Services Main 2006 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Determine all the bilinear transformations which map the half plane $\text{Im}(z) \ge 0$ into the unit circle $|w| \le 1$.

Solution. Since the *x*-axis is to be mapped onto the circle |w| = 1, we determine conditions on *a*, *b*, *c*, *d* where

$$w = \frac{az+b}{cz+d}$$

is the desired bilinear transformation, such that points $z = 0, z = 1, z = \infty$ are mapped onto points with modulus 1.

First of all, $c \neq 0$, because if c = 0 then the image of $z = \infty$ would be $w = \infty$, which is not possible.

Clearly $z = \infty$ is mapped onto $w = \frac{a}{c}$, thus we must have $|\frac{a}{c}| = 1$ or $|a| = |c| \neq 0$.

When z = 0, $w = \frac{b}{d}$ (note that $d \neq 0$, because otherwise z = 0 would be mapped onto ∞), thus |w| = 1 gives us $|b| = |d| \neq 0$.

Since
$$a \neq 0, c \neq 0$$
, we can write $w = \frac{az+b}{cz+d} = \frac{a}{c} \left(\frac{z+\frac{b}{a}}{z+\frac{d}{c}}\right) = e^{i\alpha} \frac{z-z_0}{z-z_1}$ with $e^{i\alpha} = \frac{a}{c}, z_0 = e^{i\alpha} \frac{z-z_0}{z-z_1}$

 $-\frac{b}{a}, z_1 = -\frac{d}{c}$. But $\left|\frac{b}{a}\right| = \left|\frac{d}{c}\right|$, so $|z_0| = |z_1|$. Thus we have proved that w can be written in the form

$$w = e^{i\alpha} \left(\frac{z - z_0}{z - z_1} \right)$$
 with $\alpha \in \mathbb{R}, |z_0| = |z_1|$

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012. We now use the fact that the image of z = 1 has modulus 1, and get

$$\begin{aligned} |1-z_0| &= |1-z_1| \\ \Rightarrow (1-z_0)(1-\overline{z_0}) &= (1-z_1)(1-\overline{z_1}) \\ \Rightarrow 1-z_0-\overline{z_0}+z_0\overline{z_0} &= 1-z_1-\overline{z_1}+z_1\overline{z_1} \\ \Rightarrow z_0+\overline{z_0} &= z_1+\overline{z_1} \quad \because |z_0| = |z_1| \Rightarrow z_0\overline{z_0} = z_1\overline{z_1} \\ \Rightarrow \operatorname{Re}(z_0) &= \operatorname{Re}(z_1) \end{aligned}$$

This gives us $z_0 = z_1$ or $z_0 = \overline{z_1}$ because if $z_0 = x + iy_0$, $z_1 = x + iy_1$, then $x^2 + y_0^2 = x^2 + y_1^2 \Rightarrow y_0^2 = y_1^2 \Rightarrow y_1 = \pm y_0$. If $z_0 = z_1$, then $w = e^{i\alpha}$, a constant, which is not possible, therefore $z_1 = \overline{z_0}$ and the transformation w can be written as $w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}}\right)$.

This transformation maps z_0 to w = 0. Since we require the upper half plane Im(z) > 0 to be mapped onto the interior of |w| = 1, we must have $\text{Im}(z_0) > 0$. Thus any transformation which maps the real axis onto |w| = 1 and the region Im(z) > 0 to the interior of |w| = 1can be written in the form

$$w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}} \right), \quad \alpha \in \mathbb{R}, \operatorname{Im}(z_0) > 0$$

We now prove the converse — any bilinear transformation $w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}} \right), \quad \alpha \in \mathbb{R}, \operatorname{Im}(z_0) > 0 \text{ maps } \operatorname{Im}(z) > 0 \text{ to } |w| \leq 1.$

If z is such that $\operatorname{Im}(z) \geq 0$, then it can be seen easily that $|z - z_0| < |z - \overline{z_0}|$, therefore |w| < 1. Similarly if we assume that $\operatorname{Im}(z) < 0$, then $|z - z_0| > |z - \overline{z_0}|$ and therefore |w| > 1. Clearly when z lies on the real axis, then |w| = 1 as $|z - z_0| = |z - \overline{z_0}|$. This proves the result.

Hence all bilinear transformations of the required type are of the form

$$\left\{w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}}\right), \quad \alpha \in \mathbb{R}, \operatorname{Im}(z_0) > 0\right\}$$

Alternate Solution: Since the x-axis is mapped to the unit circle |w| = 1, the reflection of the image of z in |w| = 1 is the same as the image of the reflection of z in the x-axis i.e. \overline{z} . Thus

$$\overline{\left(1\left/\frac{az+b}{cz+d}\right)} = \frac{a\overline{z}+b}{c\overline{z}+d}$$

$$\Rightarrow \overline{(cz+d)}(c\overline{z}+d) = \overline{(az+b)}(a\overline{z}+b)$$

$$\Rightarrow c\overline{cz}^{2} + (c\overline{d}+\overline{c}d)\overline{z}+d\overline{d} = a\overline{az}^{2} + (a\overline{b}+\overline{a}b)\overline{z}+b\overline{b}$$

Comparing coefficients of the powers of \overline{z} we have |a| = |c|, |b| = |d|, $\operatorname{Re}(b\overline{a}) = \operatorname{Re}(d\overline{c})$, thus since $ad - bc \neq 0$, we have $|a| = |c| \neq 0$, $|b| = |d| \neq 0$, and $\operatorname{Re}(\frac{b}{a}) = \operatorname{Re}(\frac{b\overline{a}}{a\overline{a}}) = \operatorname{Re}(\frac{d\overline{c}}{c\overline{c}}) = \operatorname{Re}(\frac{d}{c})$.

Thus we can write $w = \frac{az+b}{cz+d} = \frac{a}{c} \left(\frac{z+\frac{b}{a}}{z+\frac{d}{c}}\right) = e^{i\alpha} \frac{z-z_0}{z-z_1}$ with $e^{i\alpha} = \frac{a}{c}, z_0 = -\frac{b}{a}, z_1 = -\frac{b}{a}$

 $-\frac{d}{c}$. Thus Re $z_0 = \text{Re } z_1, |z_0| = |z_1|$, hence $z_0 = z_1$ or $z_0 = \overline{z_1}$. The former is not possible as it would make ad - bc = 0, hence $z_0 = \overline{z_1}$. For the same reason, $\text{Im } z_0 \neq 0$. So we have

$$w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}} \right), \quad \alpha \in \mathbb{R}$$

Now in addition, since the upper half plane Im(z) > 0 is mapped onto the interior of |w| = 1, and the image of z_0 is 0, and thus inside the unit circle, so z_0 is in the upper half plane, hence $\operatorname{Im}(z_0) > 0$.

Hence the required set of bilinear transformations is

$$\left\{w = e^{i\alpha} \left(\frac{z - z_0}{z - \overline{z_0}}\right), \quad \alpha \in \mathbb{R}, \operatorname{Im}(z_0) > 0\right\}$$

The converse is proved as above.

Question 2(a) With the aid of residues, evaluate

$$\int_0^\pi \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} \, d\theta, \quad -1 < a < 1$$

Solution. Let

$$I = \int_{0}^{\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^{2}} d\theta$$

=
$$\int_{0}^{\pi} \frac{(\cos 2\theta)(1 + 2a\cos\theta + a^{2})}{(1 + a^{2})^{2} - 4a^{2}\cos^{2}\theta} d\theta$$

=
$$\int_{0}^{\pi} \frac{(\cos 2\theta)(1 + a^{2})}{(1 + a^{2})^{2} - 4a^{2}\cos^{2}\theta} d\theta + \int_{0}^{\pi} \frac{2a\cos\theta\cos 2\theta}{(1 + a^{2})^{2} - 4a^{2}\cos^{2}\theta} d\theta$$

Since $\cos(\pi - \theta) = -\cos\theta$, on putting $\pi - \theta = \alpha$ we get

$$\int_0^{\pi} \frac{2a\cos\theta\cos 2\theta}{(1+a^2)^2 - 4a^2\cos^2\theta} \, d\theta = \int_{\pi}^0 \frac{2a(-\cos\alpha)\cos 2\alpha}{(1+a^2)^2 - 4a^2\cos^2\alpha} \, (-d\alpha)$$

showing that $\int_{0}^{\pi} \frac{2a\cos\theta\cos 2\theta}{(1+a^{2})^{2}-4a^{2}\cos^{2}\theta} d\theta = 0.$ Thus

$$I = \int_0^\pi \frac{(\cos 2\theta)(1+a^2)}{(1+a^2)^2 - 2a^2(1+\cos 2\theta)} \, d\theta$$

Putting $2\theta = \beta$, we get

$$I = \frac{1}{2} \int_0^{2\pi} \frac{(\cos\beta)(1+a^2)}{(1+a^2)^2 - 2a^2(1+\cos\beta)} \, d\beta = \frac{1}{2} \int_0^{2\pi} \frac{(1+a^2)\cos\beta}{1+a^4 - 2a^2\cos\beta} \, d\beta$$

For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

3

We now put $z = e^{i\beta}$, so that $dz = iz \, d\beta$ or $d\beta = \frac{dz}{iz}$.

$$I = \frac{1}{2} \int_{|z|=1} \frac{(1+a^2)\frac{1}{2}(z+\frac{1}{z})}{1+a^4-a^2(z+\frac{1}{z})} \frac{dz}{iz}$$

= $\frac{1+a^2}{4i} \int_{|z|=1} \frac{z^2+1}{z[(1+a^4)z-a^2z^2-a^2]} dz$
= $\frac{1+a^2}{4a^2i} \int_{|z|=1} \frac{-(z^2+1)}{z[z^2-(a^2+\frac{1}{a^2})z+1]} dz$
= $\frac{(1+a^2)i}{4a^2} \int_{|z|=1} \frac{z^2+1}{z(z-a^2)(z-\frac{1}{a^2})} dz$

Clearly the integrand has simple poles at $z = 0, z = a^2, z = \frac{1}{a^2}$, out of which z = 0 and $z = a^2$ lie inside |z| = 1 as -1 < a < 1.

Residue at
$$z = 0$$
 is $\lim_{z \to 0} \frac{(z^2 + 1)z}{z(z - a^2)(z - \frac{1}{a^2})} = 1.$
Residue at $z = a^2$ is $\lim_{z \to 0} \frac{(z^2 + 1)(z - a^2)}{z(z - a^2)(z - \frac{1}{a^2})} = \frac{a^4 + 1}{a^4 - 1}.$

Cauchy's residue theorem (the integral around a curve $= 2\pi i \cdot \text{sum of residues at poles}$ inside the curve) now gives us

$$I = \frac{(1+a^2)i}{4a^2} \cdot 2\pi i \left[1 + \frac{a^4 + 1}{a^4 - 1} \right] = -2\pi \frac{(1+a^2) \cdot 2a^4}{4a^2(a^4 - 1)} = \frac{\pi a^2}{1 - a^2}$$

Question 2(b) Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1and |z| = 2.

Solution. Let $g(z) = z^7 - 5z^3$, f(z) = 12, then

- 1. On |z| = 1, $|g(z)| \le |z^7| + 5|z^3| = 6 < 12 = |f(z)|$.
- 2. Both g(z) and f(z) are analytic on and within |z| < 1
- 3. Both g(z) and f(z) have no zeros on |z| = 1

By Rouche's theorem, $f(z) + g(z) = z^7 - 5z^3 + 12$ and f(z) have the same number of zeros inside |z| = 1. But f(z) = 12 has no zeros anywhere and in particular in the region |z| < 1, therefore $z^7 - 5z^3 + 12$ has no zeros inside the unit circle.

Now we take $g(z) = 12 - 5z^3$, $f(z) = z^7$.

1. On |z| = 2, $|g(z)| \le 12 + 5|z^3| = 52 < 2^7 = |f(z)|$.

4

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

2. Both g(z) and f(z) are analytic on and within |z| < 2

Therefore by Rouche's theorem, $g(z) + f(z) = z^7 - 5z^3 + 12$ and f(z) have the same number of zeros inside |z| = 2. Since $f(z) = z^7$ has 7 zeros (z = 0 is a zero of order 7 of f(z)) inside |z| = 2, the given polynomial has seven zeros inside |z| = 2 i.e. all its zeros lie inside |z| = 2. Since $z^7 - 5z^3 + 12$ has no zeros inside and on |z| = 1, therefore all zeros lie in the ring 1 < |z| < 2.