UPSC Civil Services Main 1980 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Define the rank of a matrix. Prove that a system of equations $\mathbf{Ax} = \mathbf{b}$ is consistent if and only if rank $(\mathbf{A}, \mathbf{b}) = \operatorname{rank} \mathbf{A}$, where (\mathbf{A}, \mathbf{b}) is the augmented matrix of the system.

Solution. See 1987 question 3(a).

Question 1(b) Verify the Cayley Hamilton Theorem for the matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, and hence find \mathbf{A}^{-1} .

Solution. The Cayley Hamilton theorem is — Every matrix **A** satisfies its characteristic equation $|x\mathbf{I} - \mathbf{A}| = 0$. In the current problem, $|x\mathbf{I} - \mathbf{A}| = \begin{vmatrix} x - 2 & -1 \\ -1 & x - 2 \end{vmatrix} = x^2 - 4x + 4 - 1 = x^2 - 4x + 3$. Thus we need to show that $\mathbf{A}^2 - 4\mathbf{A} + 3\mathbf{I} = \mathbf{0}$. Now $\mathbf{A}^2 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, so $\mathbf{A}^2 - 4\mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} - 4\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} + 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, verifying the Cayley Hamilton Theorem. $\mathbf{A}^2 - 4\mathbf{A} + 3\mathbf{I} = \mathbf{0} \Rightarrow \mathbf{A}(\mathbf{A} - 4\mathbf{I}) = -3\mathbf{I} \Rightarrow \mathbf{A}^{-1} = -\frac{1}{3}(\mathbf{A} - 4\mathbf{I}) = -\frac{1}{3}(\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} - 4\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$.

Question 2(a) Prove that if **P** is any non-singular matrix of order n, then the matrices $\mathbf{P}^{-1}\mathbf{AP}$ and \mathbf{A} have the same characteristic polynomial.

Solution. The characteristic polynomial of $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is $|x\mathbf{I}-\mathbf{P}^{-1}\mathbf{A}\mathbf{P}| = |x\mathbf{P}^{-1}\mathbf{P}-\mathbf{P}^{-1}\mathbf{A}\mathbf{P}| = |\mathbf{P}^{-1}||x\mathbf{I}-\mathbf{A}||\mathbf{P}| = |x\mathbf{I}-\mathbf{A}|$ which is the characteristic polynomial of \mathbf{A} .

1 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Question 2(b) Find the eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$.

Solution. The characteristic equation of $\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ is $\begin{vmatrix} 3 - \lambda & 4 \\ 4 & -3 - \lambda \end{vmatrix} = 0 \Rightarrow -(9 - \lambda^2) - 16 = 0 \Rightarrow \lambda^2 - 25 = 0 \Rightarrow \lambda = 5, -5.$

If (x_1, x_2) is an eigenvector for $\lambda = 5$, then $\begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0} \Rightarrow 2x_1 - 4x_2 = \mathbf{0} \Rightarrow x_1 = 2x_2$. Thus $(2x, x), x \in \mathbb{R}, x \neq 0$ gives all eigenvectors for $\lambda = 5$, in particular, we can take (2, 1) as an eigenvector for $\lambda = 5$.

If (x_1, x_2) is an eigenvector for $\lambda = -5$, then $\begin{pmatrix} 8 & 4 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0} \Rightarrow 4x_1 + 2x_2 = 0 \Rightarrow x_2 = -2x_1$. Thus $(x, -2x), x \in \mathbb{R}, x \neq 0$ gives all eigenvectors for $\lambda = -5$, in particular, we can take (1, -2) as an eigenvector for $\lambda = -5$.

Question 3(a) Find a basis for the vector space $\mathcal{V} = \{p(x) \mid p(x) = a_0 + a_1x + a_2x^2\}$ and its dimension.

Solution. Let $f_1 = 1, f_2 = x, f_3 = x^2$, then f_1, f_2, f_3 are linearly independent, because $\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0 \Rightarrow \alpha_1 + \alpha_2 x + \alpha_3 x^2 = 0$ (zero polynomial) $\Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$.

 f_1, f_2, f_3 generate \mathcal{V} because $p(x) = a_0 + a_1 x + a_2 x^2 = a_0 f_1 + a_1 f_2 + a_2 f_3$ for any $p(x) \in \mathcal{V}$. Thus $\{f_1, f_2, f_3\}$ is a basis for \mathcal{V} and its dimension is 3.

Question 3(b) Find the values of the parameter λ for which the system of equations

$$x + y + 4z = 1$$

$$x + 2y - 2z = 1$$

$$\lambda x + y + z = 1$$

will have (i) unique solution (ii) no solution.

Solution. The system will have the unique solution given by $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & -2 \\ \lambda & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ if

 $\begin{vmatrix} 1 & 1 & 4 \\ 1 & 2 & -2 \\ \lambda & 1 & 1 \end{vmatrix} = 1(2+2) + 4(1-2\lambda) - 1(1+2\lambda) \neq 0. \text{ Thus } 4 + 4 - 8\lambda - 1 - 2\lambda \neq 0 \Rightarrow \lambda \neq \frac{7}{10}.$ When $\lambda = \frac{7}{10}$, the system is

$$x + y + 4z = 1$$

$$x + 2y - 2z = 1$$

$$7x + 10y + 10z = 10$$

This system has no solution as it is inconsistent: 4(x+y+4z)+3(x+2y-2z) = 7x+10y+10z = 7, but the third equation says that 7x + 10y + 10z = 10. Thus there is a unique solution if $\lambda \neq \frac{7}{10}$, and no solution if $\lambda = \frac{7}{10}$.

For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Paper II

Question 3(c) If \mathcal{V} is a finite dimensional vector space and \mathcal{M} is a subspace of \mathcal{V} , then show that each vector $\mathbf{x} \in \mathcal{V}$ can be uniquely expressed as $\mathbf{x} = \mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in \mathcal{M}$ and $\mathbf{z} \in \mathcal{M}^{\perp}$, the orthogonal complement of \mathcal{M} .

Solution. Let $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be any orthonormal basis of \mathcal{M} , where $m = \dim \mathcal{M}$. Given $\mathbf{x} \in \mathcal{V}$, let $\mathbf{y} = \sum_{i=1}^m \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i$, and $\mathbf{z} = \mathbf{x} - \mathbf{y}$. Clearly $\mathbf{y} \in \mathcal{M}$, and $\mathbf{x} = \mathbf{y} + \mathbf{z}$. Now $\langle \mathbf{z}, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle - \langle \mathbf{y}, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle - \sum_{j=1}^m \langle \mathbf{x}, \mathbf{v}_j \rangle \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle - \langle \mathbf{x}, \mathbf{v}_i \rangle = 0$. So $\langle \mathbf{z}, \mathbf{v}_i \rangle = 0, i = 1, \ldots, m \Rightarrow \langle \mathbf{z}, \mathbf{m} \rangle = 0$ for every $\mathbf{m} \in \mathcal{M}$, so $\mathbf{z} \in \mathcal{M}^{\perp}$.

Now if $\mathbf{x} = \mathbf{y}' + \mathbf{z}'$, then $\mathbf{y} - \mathbf{y}' = \mathbf{z}' - \mathbf{z}$. But $\mathbf{y} - \mathbf{y}' \in \mathcal{M}, \mathbf{z}' - \mathbf{z} \in \mathcal{M}^{\perp}$, so $\langle \mathbf{y} - \mathbf{y}', \mathbf{z}' - \mathbf{z} \rangle = 0 \Rightarrow \langle \mathbf{y} - \mathbf{y}', \mathbf{y} - \mathbf{y}' \rangle = 0 \Rightarrow ||\mathbf{y} - \mathbf{y}'|| = 0 \Rightarrow \mathbf{y} - \mathbf{y}' = \mathbf{0} \Rightarrow \mathbf{z}' - \mathbf{z} = \mathbf{0}$. Thus $\mathbf{y} = \mathbf{y}', \mathbf{z} = \mathbf{z}'$ and the representation is unique.

Question 3(d) Find one characteristic value and corresponding characteristic vector for the operators T on \mathbb{R}^3 defined as

- 1. T is a reflection on the plane x = z.
- 2. T is a projection on the plane z = 0.
- 3. T(x, y, z) = (3x + y + z, 2y + z, z).

Solution.

- 1. T(x, y, z) = (z, y, x) because the midpoint of (x, y, z) and (z, y, x) lies on the plane x = z. T(1, 0, 0) = (0, 0, 1), T(0, 1, 0) = (0, 1, 0), T(0, 0, 1) = (1, 0, 0). Thus it is clear that 1 is an eigenvalue, and (0, 1, 0) is a corresponding eigenvector.
- 2. T(1,0,0) = (1,0,0), T(0,1,0) = (0,1,0), T(0,0,1) = (0,0,0). Clearly 1 is an eigenvalue with (1,0,0) or (0,1,0) as eigenvectors.
- 3. T(1,0,0) = (3,0,0), T(0,1,0) = (1,2,0), T(0,0,1) = (1,1,1). Clearly (1,0,0) is an eigenvector, corresponding to the eigenvalue 3.

3 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.