
UPSC Civil Services Main 1981 - Mathematics
Linear Algebra

Question 1(a) State and prove the Cayley Hamilton theorem and verify it for the matrix

A =

(
2 3
3 5

)
. Use the result to determine A−1.

Solution. See 1987 question 5(a) for the Cayley Hamilton theorem.

The characteristic equation of A is

∣∣∣∣x− 2 −3
−3 x− 5

∣∣∣∣ = 0, or (x − 2)(x − 5) − 9 = 0 ⇒

x2 − 7x+ 1 = 0. The Cayley Hamilton theorem implies that A2 − 7A + I = 0.

A2 =

(
2 3
3 5

)(
2 3
3 5

)
=

(
13 21
21 34

)
.

Now A2 − 7A + I =

(
13 21
21 34

)
− 7

(
2 3
3 5

)
+

(
1 0
0 1

)
=

(
0 0
0 0

)
So the theorem is verified. A2− 7A + I = 0⇒ (A− 7I)A = −I⇒ A−1 = 7I−A. Thus

A−1 = 7

(
1 0
0 1

)
−
(

2 3
3 5

)
=

(
5 −3
−3 2

)
.

Question 1(b) Let Q be the quadratic form

Q = 5x2
1 + 5x2

2 + 2x2
3 + 8x1x2 + 4x1x3 + 4x2x3

By using an orthogonal change of variables reduce Q to a form without the cross terms i.e.
with terms of the form aijxixj, i 6= j.

Solution. The matrix of the qiven quadratic form Q is A =

5 4 2
4 5 2
2 2 2

.
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The characteristic polynomial of A is∣∣∣∣∣∣
5− λ 4 2

4 5− λ 2
2 2 2− λ

∣∣∣∣∣∣ = 0

⇒ (5− λ)(5− λ)(2− λ)− 4(5− λ)− 4(8− 4λ) + 16 + 16− 4(5− λ) = 0

⇒ (λ2 − 10λ+ 25)(2− λ)− 20 + 4λ− 32 + 16λ+ 12 + 4λ = 0

⇒ −λ3 + 12λ2 + λ(−25 + 4 + 16 + 4− 20) + 50− 20− 32 + 12 = 0

⇒ λ3 − 12λ2 + 21λ− 10 = 0

Thus the eigenvalues are λ = 1, 1, 10. Let (x1, x2, x3) be an eigenvector for λ = 10, then−5 4 2
4 −5 2
2 2 −8

x1

x2

x3

 = 0⇒
−5x1 + 4x2 + 2x3 = 0 (i)

4x1 − 5x2 + 2x3 = 0 (ii)
2x1 + 2x2 − 8x3 = 0 (iii)

Subtracting (ii) from (i), we get −9x1 + 9x2 = 0 ⇒ x1 = x2 ⇒ x1 = 2x3. Thus taking
x3 = 1, we get (2, 2, 1) as an eigenvector for λ = 10.

Let (x1, x2, x3) be an eigenvector for λ = 1, then4 4 2
4 4 2
2 2 1

x1

x2

x3

 = 0⇒ 4x1 + 4x2 + 2x3 = 0
2x1 + 2x2 + x3 = 0

Take x3 = 0, x1 = 1 ⇒ x2 = −1 to get (1,−1, 0) as an eigenvector for λ = 1. Take
x1 = x2 = 1⇒ x3 = −4 to get (1, 1,−4) as another eigenvector for λ = 1, orthogonal to the
first.

Thus

O =


2√
9

1√
2

1√
18

2√
9
− 1√

2
1√
18

1√
9

0 − 4√
18


is an orthogonal matrix such that O′AO = O−1AO =

10 0 0
0 1 0
0 0 1

. If (X1, X2, X3) are new

variables, then

x1

x2

x3

 = O

X1

X2

X3

 takes Q(x1, x2, x3) to 10X2
1 +X2

2 +X2
3 .

Note: If the orthogonal transformation was not required for the diagonalization, we
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could do it easily by completing squares:

5x2
1 + 5x2

2 + 2x2
3 + 8x1x2 + 4x1x3 + 4x2x3

= 5[x2
1 +

8

5
x1x2 +

4

5
x1x3] + 5x2

2 + 2x2
3 + 4x2x3

= 5[x1 +
4

5
x2 +

2

5
x3]

2 + (5− 16

25
)x2

2 + (2− 4

5
)x2

3 + (4− 16

5
)x2x3

= 5[x1 +
4

5
x2 +

2

5
x3]

2 +
9

5
(x2

2 +
4

9
x2x3) +

6

5
x2

3

= 5[x1 +
4

5
x2 +

2

5
x3]

2 +
9

5
[x2 +

2

9
x3]

2 +
10

9
x2

3

= 5X2 +
9

5
Y 2 +

10

9
Z2

where X = x1 + 4
5
x2 + 2

5
x3, Y = x2 + 2

9
x3, Z = x3, or x3 = Z, x2 = Y − 2

9
Z, x1 = X− 4

5
Y − 2

9
Z.

Question 2(a) Define a vector space. Show that the set V of all real-valued functions on
[0, 1] is a vector space over the set of real numbers with respect to the addition and scalar
multiplication of functions.

Solution. See 1984 question 4(a).

Question 2(b) If zero is a root of the characteristic equation of a matrix A, show that the
corresponding linear transformation cannot be one to one.

Solution. If zero is a root of |A − λI| = 0, the characteristic equation of A, then 0 is an
eigenvalue of A, so there is a non-zero eigenvector x such that Ax = 0, thus A is not 1-1.

Question 2(c) Show that a linear transformation T from a Euclidean space V to V is
orthogonal if and only if the matrix corresponding to it with respect to any orthonormal basis
is orthogonal.

Solution. T : V −→ V is said to be orthogonal if 〈T(u),T(v)〉 = 〈u,v〉 for any u,v ∈ V .
Lemma 1. T is orthogonal iff T takes an orthonormal basis to an orthonormal basis.
Proof: Let {v1,v2, . . . ,vn} be an orthonormal basis. Then

1. 〈T(vi),T(vj)〉 = 〈vi,vj〉 = 0 if i 6= j

2. 〈T(vi),T(vi)〉 = 〈vi,vi〉 = 1

3. If
∑n

i=1 αiT(vi) = 0, then 〈
∑n

i=1 αiT(vi),vj〉 = αj = 0 for all j, so T(vi) are linearly
independent.
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Thus T(v1), . . . ,T(vn) form an orthonormal basis.
Conversely, let T(v1), . . . ,T(vn) be an orthonormal basis of V . Let v =

∑n
i=1 αivi,w =∑n

i=1 βivi, then 〈v,w〉 =
∑n

i=1 αiβi and 〈T(v),T(w)〉 = 〈
∑n

i=1 αiT(vi),
∑n

i=1 βiT(vi)〉 =∑n
i=1 αiβi. Thus 〈T(v),T(w)〉 = 〈v,w〉 , so T is orthogonal.
Lemma 2. Let T∗ be defined by 〈T(v),w〉 = 〈v,T∗(w)〉 . Then T∗ is a linear trans-

formation, and T is orthogonal iff T∗T = TT∗ = I.
Proof: The fact that T∗ is a linear transformation can be easily checked. If T is

orthogonal, then 〈v,T∗T(w)〉 = 〈T(v),T(w)〉 = 〈v,w〉 , so T∗T = I. From this and the
fact that T is 1-1, it follows that TT∗ = I.

Lemma 3. If the matrix of T w.r.t. the orthonormal basis {v1,v2, . . . ,vn} is A = (aij),
then the matrix of T∗ is the transpose, i.e. (aji).

Proof: T(vi) =
∑n

j=1 aijvj. Let T∗(vi) =
∑n

j=1 bijvj. Now bij = 〈T∗(vi),vj〉 =
〈vi,T(vj)〉 = 〈vi,

∑n
k=1 ajkvk〉 = aji. Since TT∗ = I, A′A = AA′ = I, so A is orthogonal.

The converse is also obvious now.

Question 3(a) Investigate for what values of λ and µ does the following system of equations

x+ y + z = 6

x+ 2y + 3z = 10

x+ 2y + λz = µ

have (1) a unique solution (2) no solution (3) an infinite number of solutions?

Solution.

1. A unique solution exists when

∣∣∣∣∣∣
1 1 1
1 2 3
1 2 λ

∣∣∣∣∣∣ 6= 0, whatever µmay be. Thus 2λ−6−(λ−3) 6=

0 ⇒ λ 6= 3. Thus for all λ 6= 3 and for all µ we have a unique solution given byxy
z

 =

1 1 1
1 2 3
1 2 λ

−1 6
10
µ


2. A unique solution does not exist if λ = 3. If µ 6= 10, then the second and third

equations are inconsistent. Thus if λ = 3, µ 6= 10, the system has no solution.

3. If λ = 3, µ = 10, then the system is x+y+z = 6, x+2y+3z = 10. The coefficient matrix
is of rank 2, so the space of solutions is one dimensional. y + 2z = 4 ⇒ y = 4 − 2z,
and thus x = 2 + z. The space of solutions is (2 + z, 4− 2z, z) for z ∈ R.
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Question 3(b) Let (xi, yi), i = 1, . . . , n be n points in the plane, no two of them having the
same abscissa. Find a polynomial f(x) of degree n− 1 which takes the value f(xi) = yi, 1 ≤
i ≤ n.

Solution. Let f(x) = a0 + a1x + . . . + an−1x
n−1. We want to determine a0, . . . , an−1 such

that

A


a0

a1
...

an−1

 =


1 x1 . . . xn−1

1

1 x2 . . . xn−1
2

...
1 xn . . . xn−1

n




a0

a1
...

an−1

 =


y1

y2
...
yn



This is possible as |A| 6= 0, as x1, . . . , xn are distinct.


a0

a1
...

an−1

 = A−1


y1

y2
...
yn

.

Note: We can also use Lagrange’s interpolation formula from numerical analysis, giving

f(x) =
n∑

i−1

yi

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

The two methods give the same polynomial, which is unique.

Paper II

Question 4(a) Find a set of three orthonormal eigenvectors for the matrix A =

3 0 0

0 4
√

3

0
√

3 6


Solution. The characteristic equation of A is

|A− λI =

∣∣∣∣∣∣
3− λ 0 0

0 4− λ
√

3

0
√

3 6− λ

∣∣∣∣∣∣ = 0

Thus (3− λ)(4− λ)(6− λ)− 3(3− λ) = 0⇒ λ = 3, λ2− 10λ+ 21 = 0. Thus the eigenvalues
of A are 3, 3, 7.

Let (x1, x2, x3) be an eigenvector for λ = 7. Then−4 0 0

0 −3
√

3

0
√

3 −1

x1

x2

x3

 = 0

Thus −4x1 = 0,−3x2 +
√

3x3 = 0,
√

3x2−x3 = 0. Thus x1 = 0, x3 =
√

3x2 with x2 6= 0 gives
any eigenvector for λ = 7. Take x2 = 1 to get (0, 1,

√
3), and normalize it to get (0, 1

2
,
√

3
2

).
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Let (x1, x2, x3) be an eigenvector for λ = 3. Then0 0 0

0 1
√

3

0
√

3 3

x1

x2

x3

 = 0

Thus x2 +
√

3x3 = 0. Thus (x1,−
√

3x3, x3) with x1, x3 ∈ R gives any eigenvector for λ = 3.
We can take x1 = 1, x3 = 0, and x1 = 0, x3 = 1 to get (1, 0, 0), (0,−

√
3, 1) as eigenvectors for

λ = 3 — these are orthogonal and therefore span the the eigenspace of λ = 3. Orthonormal
vectors are (1, 0, 0), (0,−

√
3

2
, 1

2
).

Thus the required orthonormal vectors are (0, 1
2
,
√

3
2

), (1, 0, 0), (0,−
√

3
2
, 1

2
).

In fact 0 1
2

√
3

2

0 −
√

3
2

1
2

1 0 0

3 0 0

0 4
√

3

0
√

3 6

 0 0 1
1
2
−
√

3
2

0√
3

2
1
2

0

 =

7 0 0
0 3 0
0 0 3



Question 4(b) Show that if A = X′AX and B = X′BX are two quadratic forms one of
which is positive definite and A,B are symmetric matrices, then they can be expressed as
linear combinations of squares by an appropriate linear transformation.

Solution. Let B be positive definite. Then there exists an orthogonal real non-singular
matrix H such that H′BH = In, the unit matrix of order n. A is real-symmetric⇒ H′AH is
real symmetric. There exists K a real orthogonal matrix such that K′H′AHK is a diagonal

matrix i.e. K′H′AHK =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 where λ1, . . . , λn are the eigenvalues of H′AH.

Now K′H′BHK = K′InK = In. Then

x1
...
xn

 = HK

X1
...
Xn

 diagonalizes A,B simulta-

neously.

(
x1 . . . xn

)
A

x1
...
xn

 = λ1X
2
1 + . . .+ λnX

2
n

(
x1 . . . xn

)
B

x1
...
xn

 = X2
1 + . . .+X2

n

Note that λ1, . . . , λn are the roots of |A−λB| = 0 because |A−λB| = |H′||A−λB||H| =
|H′AH− λH′BH| = |H′AH− λIn| =

∏n
i=1(λ− λi).
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