UPSC Civil Services Main 1982 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Let \mathcal{V} be a vector space. If dim $\mathcal{V} = n$ with n > 0, prove that

- 1. any set of n linearly independent vectors is a basis of \mathcal{V} .
- 2. \mathcal{V} cannot be generated by fewer than n vectors.

Solution. From 1983 question 1(a) we get that any two bases of \mathcal{V} have *n* elements.

- 1. Let $\mathbf{v_1}, \ldots, \mathbf{v_n}$ be *n* linearly independent vectors in \mathcal{V} . Then $\mathbf{v_1}, \ldots, \mathbf{v_n}$ generate \mathcal{V} if $\mathbf{v} \in \mathcal{V}$ is such that \mathbf{v} is not a linear combination of $\mathbf{v_1}, \ldots, \mathbf{v_n}$, then $\mathbf{v}, \mathbf{v_1}, \ldots, \mathbf{v_n}$ are linearly independent, so dim $\mathcal{V} > n$ which is not true. Thus $\mathbf{v_1}, \ldots, \mathbf{v_n}$ is a basis of \mathcal{V} here we have used the technique used to complete any linearly independent set to a basis.
- 2. \mathcal{V} cannot be generated by fewer than *n* vectors, because then it will have a basis consisting of less than *n* elements, which contradicts the fact that dim $\mathcal{V} = n$.

Question 1(b) Define a linear transformation. Prove that both the range and the kernel of a linear transformation are vector spaces.

Solution. Let \mathcal{V} and \mathcal{W} be two vector spaces. A mapping $\mathbf{T} : \mathcal{V} \longrightarrow \mathcal{W}$ is said to be a linear transformation if

- 1. $T(v_1 + v_2) = T(v_1) + T(v_2)$.
- 2. $\mathbf{T}(\alpha \mathbf{v}) = \alpha \mathbf{T}(\mathbf{v})$ for any $\alpha \in \mathbb{R}, \mathbf{v} \in \mathcal{V}$.

Range of $\mathbf{T} = \mathbf{T}(\mathcal{V})$, kernel of $\mathbf{T} = \{\mathbf{v} \mid \mathbf{T}(\mathbf{v}) = 0\}$. If $\mathbf{w}_1, \mathbf{w}_2 \in \mathbf{T}(\mathcal{V})$, then $\mathbf{w}_1 = \mathbf{T}(\mathbf{v}_1), \mathbf{w}_2 = \mathbf{T}(\mathbf{v}_2)$ for some $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}, \alpha \mathbf{w}_1 + \beta \mathbf{w}_2 = \alpha \mathbf{T}(\mathbf{v}_1) + \beta \mathbf{T}(\mathbf{v}_2) = \mathbf{T}(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2)$. But $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \in \mathcal{V} :: \alpha \mathbf{w}_1 + \beta \mathbf{w}_2 \in \mathbf{T}(\mathcal{V})$, thus $\mathbf{T}(\mathcal{V})$ is a subspace of \mathcal{W} . Note that $\mathbf{T}(\mathcal{V}) \neq \emptyset :: \mathbf{0} \in \mathbf{T}(\mathcal{V})$ so $\mathbf{T}(\mathcal{V})$ is a vector space.

If $\mathbf{v_1}, \mathbf{v_2} \in \text{kernel } \mathbf{T}$ then $\mathbf{T}(\mathbf{v_1}) = \mathbf{0}, \mathbf{T}(\mathbf{v_2}) = \mathbf{0}$. Now $\mathbf{T}(\alpha \mathbf{v_1} + \beta \mathbf{v_2}) = \alpha \mathbf{T}(\mathbf{v_1}) + \beta \mathbf{T}(\mathbf{v_2}) = \mathbf{0} \Rightarrow \alpha \mathbf{v_1} + \beta \mathbf{v_2} \in \text{kernel } \mathbf{T}$. Thus kernel \mathbf{T} is a subspace. kernel $\mathbf{T} \neq \emptyset, bf0 \in \text{kernel } \mathbf{T}$ so kernel \mathbf{T} is a vector space.

Question 2(a) Reduce the matrix

$$\begin{pmatrix} 2 & 3 & -1 & 0 \\ 1 & -1 & 2 & 0 \\ 1 & 2 & -1 & 0 \end{pmatrix}$$

to row echelon form.

Solution. Let the given matrix be called **A**. Operation $R_1 - R_2 \Rightarrow \mathbf{A} \sim \begin{pmatrix} 1 & 4 & -3 & 0 \\ 1 & -1 & 2 & 0 \\ 1 & 2 & -1 & 0 \end{pmatrix}$ Operation $R_2 - R_1, R_3 - R_1 \Rightarrow \mathbf{A} \sim \begin{pmatrix} 1 & 4 & -3 & 0 \\ 0 & -5 & 5 & 0 \\ 0 & -2 & 2 & 0 \end{pmatrix}$ Operation $-\frac{1}{5}R_2, -\frac{1}{2}R_3 \Rightarrow \mathbf{A} \sim \begin{pmatrix} 1 & 4 & -3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}$ Operation $R_3 - R_2 \Rightarrow \mathbf{A} \sim \begin{pmatrix} 1 & 4 & -3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ Operation $R_1 - 4R_2 \Rightarrow \mathbf{A} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ Thus rank $\mathbf{A} = 2$ and the row echelon form is $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Question 2(b) If \mathcal{V} is a vector space of dimension n and \mathbf{T} is a linear transformation on \mathcal{V} of rank r, prove that \mathbf{T} has nullity n - r.

Solution. See 1998 question 3(a).

Question 2(c) Show that the system of equations

$$3x + y - 5z = -1$$
$$x - 2y + z = -5$$
$$x + 5y - 7z = 2$$

is inconsistent.

Solution. From the first two equations, $(3x + y - 5z) - 2(x - 2y + z) = -1 - 2(-5) = 9 \Rightarrow x + 5y - 7z = 9$. But this is inconsistent with the third equation, hence the overall system in inconsistent.

Question 3(a) Prove that the trace of a matrix is equal to the sum of its characteristic roots.

Solution. The characteristic polynomial of \mathbf{A} is $|\lambda \mathbf{I} - \mathbf{A}| = \lambda^n + p_1 \lambda^{n-1} + p_2 \lambda^{n-2} + \ldots + p_n$. Thus the sum of the roots of $|\lambda \mathbf{I} - \mathbf{A}| = -p_1 = a_{11} + a_{22} + \ldots + a_{nn} = \operatorname{tr} \mathbf{A}$. Thus the trace of \mathbf{A} = sum of the eigenvalues of \mathbf{A} .

Question 3(b) If A, B are two non-singular matrices of the same order, prove that AB and BA have the same eigenvalues.

Solution. See 1995 question 2(b).

Question 3(c) Find the eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$.

Solution. The characteristic equation of **A** is $(\cos \theta - \lambda)(-\cos \theta - \lambda) - \sin^2 \theta = 0 \Rightarrow \lambda^2 - 1 = 0 \Rightarrow \lambda = \pm 1.$

If (x_1, x_2) is an eigenvector for $\lambda = 1$, then

$$\begin{pmatrix} \cos \theta - 1 & \sin \theta \\ \sin \theta & -\cos \theta - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0}$$

Thus $x_1(\cos\theta - 1) + x_2 \sin\theta = 0$, $x_1 \sin\theta + x_2(-\cos\theta - 1) = 0$. We can take $x_1 = 1 + \cos\theta$, $x_2 = \sin\theta$.

Similarly if (x_1, x_2) is an eigenvector for $\lambda = -1$, then

$$\begin{pmatrix} \cos \theta + 1 & \sin \theta \\ \sin \theta & -\cos \theta + 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0}$$

Thus $x_1(\cos \theta + 1) + x_2 \sin \theta = 0$, $x_1 \sin \theta + x_2(-\cos \theta + 1) = 0$. We can take $x_1 = 1 - \cos \theta$, $x_2 = -\sin \theta$ as an eigenvector.

Paper II

Question 4(a) If \mathcal{V} is finite dimensional and if \mathcal{W} is a subspace of \mathcal{V} , then show that \mathcal{W} is finite dimensional and dim $\mathcal{W} \leq \dim \mathcal{V}$.

Solution. If $\mathcal{W} = \{\mathbf{0}\}$ then dim $\mathcal{W} = 0 \leq \dim \mathcal{V}$. If $\mathcal{W} \neq \{\mathbf{0}\}$, let $\mathbf{v_1} \in \mathcal{W}, \mathbf{v_1} \neq \mathbf{0}$. Let \mathcal{W}_1 be the space spanned by $\mathbf{v_1}$ then \mathcal{W}_1 is of dimension 1. If $\mathcal{W}_1 = \mathcal{W}$, then dim $\mathcal{W} = 1 \leq \dim \mathcal{V}$.

If $\mathcal{W}_1 \neq \mathcal{W}$, then there exists a $\mathbf{v}_2 \in \mathcal{W}, \mathbf{v}_2 \notin \mathcal{W}_1$. $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent if $a\mathbf{v}_1 + b\mathbf{v}_2 = 0$, then if $b \neq 0$ then $\mathbf{v}_2 = -\frac{a}{b}\mathbf{v}_1 \Rightarrow \mathbf{v}_2 \in \mathcal{W}_1$, which is not true, hence $b = 0 \Rightarrow a = 0$. Now let \mathcal{W}_2 be the space spanned by $\mathbf{v}_1, \mathbf{v}_2$ then \mathcal{W}_2 is of dimension 2. If $\mathcal{W}_2 = \mathcal{W}$, then dim $\mathcal{W} = 2 \leq \dim \mathcal{V}$.

We continue the same reasoning as above, but this process must stop after at most r steps where $r \leq n$, otherwise we would have found n + 1 linearly independent vectors in \mathcal{V} , which is not possible. After r steps, we would have $\mathbf{v_1}, \ldots, \mathbf{v_r}$ which are linearly independent and span \mathcal{W} . Thus dim $\mathcal{W} \leq \dim \mathcal{V}$, and \mathcal{W} is finite dimensional.

Question 5(a) State and prove the Cayley-Hamilton Theorem when the eigenvalues are all different.

Solution. See 1987 question 5(a).

Question 5(b) When are two real symmetric matrices said to be congruent? Is congruence an equivalence relation? Also show how you can find the signature of \mathbf{A} .

Solution. Two matrices \mathbf{A}, \mathbf{B} are said to be congruent to each other if there exists a nonsingular matrix \mathbf{P} such that $\mathbf{P}'\mathbf{AP} = \mathbf{B}$.

Congruence is an equivalence relation:

- Reflexive: $\mathbf{A} \equiv \mathbf{A} :: \mathbf{A} = \mathbf{I}' \mathbf{A} \mathbf{I}$, \mathbf{I} is the unit matrix.
- Symmetric: $\mathbf{A} \equiv \mathbf{B} \Rightarrow \mathbf{P}' \mathbf{A} \mathbf{P} = \mathbf{B} \Rightarrow \mathbf{A} = (\mathbf{P}^{-1})' \mathbf{B} \mathbf{P}^{-1} \Rightarrow \mathbf{B} \equiv \mathbf{A}.$
- Transitive: $\mathbf{A} \equiv \mathbf{B}, \mathbf{B} \equiv \mathbf{C} \Rightarrow \mathbf{A} \equiv \mathbf{C} \mathbf{P}'\mathbf{A}\mathbf{P} = \mathbf{B}, \mathbf{Q}'\mathbf{B}\mathbf{Q} = \mathbf{C} \Rightarrow \mathbf{Q}'\mathbf{P}'\mathbf{A}\mathbf{P}\mathbf{Q} = \mathbf{C} \Rightarrow \mathbf{A} \equiv \mathbf{C}$ because $\mathbf{P}\mathbf{Q}$ is nonsingular as both \mathbf{P}, \mathbf{Q} are nonsingular.

Given a symmetric matrix \mathbf{A} , we first prove that there exists a nonsingular matrix \mathbf{P} such that $\mathbf{P}'\mathbf{A}\mathbf{P} = \text{diagonal}[\alpha_1, \alpha_2, \dots, \alpha_r, 0, \dots, 0]$ where r is the rank of \mathbf{A} .

We will prove this by induction on the order n of the matrix **A**. If n = 1, there is nothing to prove. Assume that the result is true for all matrices of order < n.

Step 1. We first ensure that we have $a_{11} \neq 0$. If it is 0, but some other $a_{kk} \neq 0$, we interchange the k-th row with the first row and the k-th column with the first column, to get $\mathbf{B} = \mathbf{P}'\mathbf{A}\mathbf{P}$, where $b_{11} = a_{kk} \neq 0$. Note that \mathbf{P} is the elementary matrix \mathbf{E}_{1k} (see 1983 question 2(a)), and is hence nonsingular and symmetric, so \mathbf{B} is symmetric.

If all a_{ii} are 0, but some $a_{ij} \neq 0$. We add the *j*-th row to the *i*-th row and the *j*-th column to the *i*-th column by multiplying **A** by $\mathbf{E}_{ij}(1)$ and its transpose, to get $\mathbf{B} = \mathbf{E}_{ij}(1)\mathbf{A}\mathbf{E}_{ij}(1)'$

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

— now $b_{ii} = a_{ij} + a_{ji} \neq 0$. *B* is still symmetric, and we can shift b_{ii} to the leading place as above.

(Note that if all $a_{ij} = 0$, we stop.)

Thus we start with $a_{11} \neq 0$. We subtract $\frac{a_{1k}}{a_{11}}$ times the first row from the k-th row and $\frac{a_{1k}}{a_{11}}$ times the first column from the k-th column, by performing $\mathbf{B} = \mathbf{E}_{k1}(-\frac{a_{1k}}{a_{11}})\mathbf{A}\mathbf{E}_{k1}(-\frac{a_{1k}}{a_{11}})'$ Repeating this for all $k, 2 \leq k \leq n$, we get $\mathbf{P}'_{1}\mathbf{A}\mathbf{P}_{1} = \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{1} \end{pmatrix}$, where \mathbf{A}_{1} is $n-1 \times n-1$ and \mathbf{P}_{1} is nonsingular. Now by induction, $\exists \mathbf{P}_{2}, n-1 \times n-1$ such that $\mathbf{P}'_{2}\mathbf{A}\mathbf{P}_{2} = \text{diagonal}[\beta_{2}, \dots, \beta_{r}, 0, \dots, 0]$, rank $\mathbf{A}_{1} = \text{rank } \mathbf{A} - 1$. Now set $\mathbf{P} = \mathbf{P}_{1} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{2} \end{pmatrix}$ to get the result.

Now that we have $\mathbf{P'AP} = \text{diagonal}[\alpha_1, \alpha_2, \dots, \alpha_r, 0, \dots, 0]$, let us assume that $\alpha_1, \dots, \alpha_s$ are positive, the rest are negative. Then let $\alpha_i = \beta_i^2, 1 \le i \le s, -\alpha_j = \beta_j^2, s+1 \le j \le r$. Set $\mathbf{Q} = \text{diagonal}[\beta_1^{-1}, \dots, \beta_r^{-1}, 1, \dots, 1]$. Then $\mathbf{x'Q'P'APQx} = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - x_r^2$. Thus we can find the signature of \mathbf{A} by looking at the number of positive and negative squares of the RHS.

Question 5(c) Derive a set of necessary and sufficient conditions that the real quadratic form $\sum_{j=1}^{3} \sum_{i=1}^{3} a_{ij} x_i x_j$ be positive definite. Is $4x^2 + 9y^2 + 2z^2 + 8yz + 6zx + 6xy$ positive definite?

Solution. For the first part, see 1992 question 2(c).

$$Q(x, y, z) = 4x^{2} + 9y^{2} + 2z^{2} + 8yz + 6zx + 6xy$$

$$= (2x + \frac{3}{2}y + \frac{3}{2}z)^{2} + 9y^{2} + 2z^{2} + 8yz + -\frac{9}{2}yz - \frac{9}{4}y^{2} - \frac{9}{4}z^{2}$$

$$= (2x + \frac{3}{2}y + \frac{3}{2}z)^{2} + \frac{27}{4}y^{2} - \frac{1}{4}z^{2} - \frac{7}{2}yz$$

$$= (2x + \frac{3}{2}y + \frac{3}{2}z)^{2} + \frac{27}{4}(y^{2} - \frac{1}{27}z^{2} - \frac{14}{27}yz)$$

$$= (2x + \frac{3}{2}y + \frac{3}{2}z)^{2} + \frac{27}{4}(y - \frac{7}{27}z)^{2} - \frac{1}{4}z^{2} - \frac{49}{108}z^{2}$$

So set $X = 2x + \frac{3}{2}y + \frac{3}{2}z$, $Y = y - \frac{7}{27}z$, Z = z, then Q(x, y, z) is transformed to $X^2 + \frac{27}{4}Y^2 - \frac{76}{108}Z^2$. Hence Q(x, y, z) is not positive definite.