
UPSC Civil Services Main 1982 - Mathematics
Linear Algebra

Question 1(a) Let V be a vector space. If dimV = n with n > 0, prove that

1. any set of n linearly independent vectors is a basis of V.

2. V cannot be generated by fewer than n vectors.

Solution. From 1983 question 1(a) we get that any two bases of V have n elements.

1. Let v1, . . . ,vn be n linearly independent vectors in V . Then v1, . . . ,vn generate V —
if v ∈ V is such that v is not a linear combination of v1, . . . ,vn, then v,v1, . . . ,vn are
linearly independent, so dimV > n which is not true. Thus v1, . . . ,vn is a basis of V
— here we have used the technique used to complete any linearly independent set to
a basis.

2. V cannot be generated by fewer than n vectors, because then it will have a basis
consisting of less than n elements, which contradicts the fact that dimV = n.

Question 1(b) Define a linear transformation. Prove that both the range and the kernel of
a linear transformation are vector spaces.

Solution. Let V and W be two vector spaces. A mapping T : V −→ W is said to be a
linear transformation if

1. T(v1 + v2) = T(v1) + T(v2).

2. T(αv) = αT(v) for any α ∈ R,v ∈ V .
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Range of T = T(V), kernel of T = {v | T(v) = 0}. If w1,w2 ∈ T(V), then w1 =
T(v1),w2 = T(v2) for some v1,v2 ∈ V , αw1 + βw2 = αT(v1) + βT(v2) = T(αv1 + βv2).
But αv1 + βv2 ∈ V ∴ αw1 + βw2 ∈ T(V), thus T(V) is a subspace of W . Note that
T(V) 6= ∅ ∵ 0 ∈ T(V) so T(V) is a vector space.

If v1,v2 ∈ kernel T then T(v1) = 0,T(v2) = 0. Now T(αv1 + βv2) = αT(v1) +
βT(v2) = 0 ⇒ αv1 + βv2 ∈ kernel T. Thus kernel T is a subspace. kernel T 6= ∅, bf0 ∈
kernel T so kernel T is a vector space.

Question 2(a) Reduce the matrix 2 3 −1 0
1 −1 2 0
1 2 −1 0


to row echelon form.

Solution. Let the given matrix be called A.

Operation R1 −R2 ⇒ A ∼

1 4 −3 0
1 −1 2 0
1 2 −1 0


Operation R2 −R1, R3 −R1 ⇒ A ∼

1 4 −3 0
0 −5 5 0
0 −2 2 0


Operation −1

5
R2,−1

2
R3 ⇒ A ∼

1 4 −3 0
0 1 −1 0
0 1 −1 0


Operation R3 −R2 ⇒ A ∼

1 4 −3 0
0 1 −1 0
0 0 0 0


Operation R1 − 4R2 ⇒ A ∼

1 0 1 0
0 1 −1 0
0 0 0 0


Thus rank A = 2 and the row echelon form is

1 0 1 0
0 1 −1 0
0 0 0 0


Question 2(b) If V is a vector space of dimension n and T is a linear transformation on
V of rank r, prove that T has nullity n− r.

Solution. See 1998 question 3(a).
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Question 2(c) Show that the system of equations

3x+ y − 5z = −1

x− 2y + z = −5

x+ 5y − 7z = 2

is inconsistent.

Solution. From the first two equations, (3x+ y− 5z)− 2(x− 2y+ z) = −1− 2(−5) = 9⇒
x + 5y − 7z = 9. But this is inconsistent with the third equation, hence the overall system
in inconsistent.

Question 3(a) Prove that the trace of a matrix is equal to the sum of its characteristic
roots.

Solution. The characteristic polynomial of A is |λI−A| = λn +p1λ
n−1 +p2λ

n−2 + . . .+pn.
Thus the sum of the roots of |λI−A| = −p1 = a11 + a22 + . . .+ ann = tr A. Thus the trace
of A = sum of the eigenvalues of A.

Question 3(b) If A,B are two non-singular matrices of the same order, prove that AB
and BA have the same eigenvalues.

Solution. See 1995 question 2(b).

Question 3(c) Find the eigenvalues and eigenvectors of the matrix A =

(
cos θ sin θ
sin θ − cos θ

)
.

Solution. The characteristic equation of A is (cos θ − λ)(− cos θ − λ) − sin2 θ = 0 ⇒
λ2 − 1 = 0⇒ λ = ±1.

If (x1, x2) is an eigenvector for λ = 1, then(
cos θ − 1 sin θ

sin θ − cos θ − 1

)(
x1

x2

)
= 0

Thus x1(cos θ−1)+x2 sin θ = 0, x1 sin θ+x2(− cos θ−1) = 0. We can take x1 = 1+cos θ, x2 =
sin θ.

Similarly if (x1, x2) is an eigenvector for λ = −1, then(
cos θ + 1 sin θ

sin θ − cos θ + 1

)(
x1

x2

)
= 0

Thus x1(cos θ+1)+x2 sin θ = 0, x1 sin θ+x2(− cos θ+1) = 0. We can take x1 = 1−cos θ, x2 =
− sin θ as an eigenvector.
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Paper II

Question 4(a) If V is finite dimensional and if W is a subspace of V, then show that W
is finite dimensional and dimW ≤ dimV.

Solution. If W = {0} then dimW = 0 ≤ dimV . If W 6= {0}, let v1 ∈ W ,v1 6= 0. Let W1

be the space spanned by v1 thenW1 is of dimension 1. IfW1 =W , then dimW = 1 ≤ dimV .
If W1 6= W , then there exists a v2 ∈ W ,v2 6∈ W1. v1,v2 are linearly independent —

if av1 + bv2 = 0, then if b 6= 0 then v2 = −a
b
v1 ⇒ v2 ∈ W1, which is not true, hence

b = 0 ⇒ a = 0. Now let W2 be the space spanned by v1,v2 then W2 is of dimension 2. If
W2 =W , then dimW = 2 ≤ dimV .

We continue the same reasoning as above, but this process must stop after at most r
steps where r ≤ n, otherwise we would have found n+ 1 linearly independent vectors in V ,
which is not possible. After r steps, we would have v1, . . . ,vr which are linearly independent
and span W . Thus dimW ≤ dimV , and W is finite dimensional.

Question 5(a) State and prove the Cayley-Hamilton Theorem when the eigenvalues are all
different.

Solution. See 1987 question 5(a).

Question 5(b) When are two real symmetric matrices said to be congruent? Is congruence
an equivalence relation? Also show how you can find the signature of A.

Solution. Two matrices A,B are said to be congruent to each other if there exists a
nonsingular matrix P such that P′AP = B.

Congruence is an equivalence relation:

• Reflexive: A ≡ A ∵ A = I′AI, I is the unit matrix.

• Symmetric: A ≡ B⇒ P′AP = B⇒ A = (P−1)′BP−1 ⇒ B ≡ A.

• Transitive: A ≡ B,B ≡ C ⇒ A ≡ C — P′AP = B,Q′BQ = C ⇒ Q′P′APQ =
C⇒ A ≡ C because PQ is nonsingular as both P,Q are nonsingular.

Given a symmetric matrix A, we first prove that there exists a nonsingular matrix P
such that P′AP = diagonal[α1, α2, . . . , αr, 0, . . . , 0] where r is the rank of A.

We will prove this by induction on the order n of the matrix A. If n = 1, there is nothing
to prove. Assume that the result is true for all matrices of order < n.

Step 1. We first ensure that we have a11 6= 0. If it is 0, but some other akk 6= 0, we
interchange the k-th row with the first row and the k-th column with the first column, to
get B = P′AP, where b11 = akk 6= 0. Note that P is the elementary matrix E1k (see 1983
question 2(a)), and is hence nonsingular and symmetric, so B is symmetric.

If all aii are 0, but some aij 6= 0. We add the j-th row to the i-th row and the j-the column
to the i-th column by multiplying A by Eij(1) and its transpose, to get B = Eij(1)AEij(1)′
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— now bii = aij + aji 6= 0. B is still symmetric, and we can shift bii to the leading place as
above.

(Note that if all aij = 0, we stop.)
Thus we start with a11 6= 0. We subtract a1k

a11
times the first row from the k-th row and

a1k

a11
times the first column from the k-th column, by performing B = Ek1(−a1k

a11
)AEk1(−a1k

a11
)′

Repeating this for all k, 2 ≤ k ≤ n, we get P′1AP1 =

(
a11 0
0 A1

)
, where A1 is n − 1 ×

n − 1 and P1 is nonsingular. Now by induction, ∃P2, n − 1 × n − 1 such that P′2AP2 =

diagonal[β2, . . . , βr, 0, . . . , 0], rank A1 = rank A − 1. Now set P = P1

(
1 0
0 P2

)
to get the

result.
Now that we have P′AP = diagonal[α1, α2, . . . , αr, 0, . . . , 0], let us assume that α1, . . . , αs

are positive, the rest are negative. Then let αi = β2
i , 1 ≤ i ≤ s,−αj = β2

j , s+ 1 ≤ j ≤ r. Set

Q = diagonal[β−1
1 , . . . , β−1

r , 1, . . . , 1]. Then x′Q′P′APQx = x2
1 + . . .+ x2

s − x2
s+1 − x2

r. Thus
we can find the signature of A by looking at the number of positive and negative squares of
the RHS.

Question 5(c) Derive a set of necessary and sufficient conditions that the real quadratic
form

∑3
j=1

∑3
i=1 aijxixj be positive definite.

Is 4x2 + 9y2 + 2z2 + 8yz + 6zx+ 6xy positive definite?

Solution. For the first part, see 1992 question 2(c).

Q(x, y, z) = 4x2 + 9y2 + 2z2 + 8yz + 6zx+ 6xy

= (2x+
3

2
y +

3

2
z)2 + 9y2 + 2z2 + 8yz +−9

2
yz − 9

4
y2 − 9

4
z2

= (2x+
3

2
y +

3

2
z)2 +

27

4
y2 − 1

4
z2 − 7

2
yz

= (2x+
3

2
y +

3

2
z)2 +

27

4
(y2 − 1

27
z2 − 14

27
yz)

= (2x+
3

2
y +

3

2
z)2 +

27

4
(y − 7

27
z)2 − 1

4
z2 − 49

108
z2

So set X = 2x+ 3
2
y+ 3

2
z, Y = y− 7

27
z, Z = z, then Q(x, y, z) is transformed to X2 + 27

4
Y 2−

76
108
Z2. Hence Q(x, y, z) is is not positive definite.
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