UPSC Civil Services Main 1986 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are three $n \times n$ matrices, show that $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$. Show by an example that matrix multiplication is non-commutative.

Solution. Let $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij}), \mathbf{C} = (c_{ij})$. Let $\mathbf{BC} = (\beta_{ij}), \mathbf{AB} = (\alpha_{ij})$. Then the *ij*-th element of the RHS $= \sum_{k=1}^{n} \alpha_{ik} c_{kj}$. But $\alpha_{ik} = \sum_{l=1}^{n} a_{il} b_{lk}$, so the *ij*-th element of the RHS $= \sum_{k=1}^{n} \sum_{l=1}^{n} a_{il} b_{lk} c_{kj}$. Similarly, the *ij*-th element of the LHS $= \sum_{l=1}^{n} a_{il} \beta_{lj} = \sum_{l=1}^{n} a_{il} \sum_{k=1}^{n} b_{lk} c_{kj}$. Thus $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$. Let $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then $\mathbf{AB} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. But $\mathbf{BA} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Thus $\mathbf{AB} \neq \mathbf{BA}$.

Question 1(b) Examine the correctness or otherwise of the following statements:

- 1. The division law is not valid in matrix algebra.
- 2. If \mathbf{A}, \mathbf{B} are square matrices each of order n, and \mathbf{I} is the corresponding unit matrix, then the equation

$$AB - BA = I$$

can never hold.

Solution.

1. True. Let $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then $\mathbf{AB} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{AC}$, but $\mathbf{B} \neq \mathbf{C}$.

2. True. We have proved in 1987 question 5(c) that **AB** and **BA** have the same eigenvalues. Trace of **AB** – **BA** = trace of **AB** - trace of **BA** = sum of the eigenvalues of **AB** - sum of the eigenvalues of **BA** = 0. But trace of $I_n = n$, thus **AB** – **BA** = **I** can never hold.

Question 1(c) Find a 3×3 matrix X such that

$$\begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} \mathbf{X} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Solution. $|\mathbf{A}| = \begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix} = \mathbf{3} - \mathbf{2}(-1) - \mathbf{2}(\mathbf{2}) = \mathbf{1}$, so \mathbf{A} is non-singular. Hence $\mathbf{X} = \mathbf{A}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. A simple calculation gives $\mathbf{A}^{-1} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$. Thus $\mathbf{X} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 8 & 9 \\ 1 & 3 & 3 \\ 2 & 7 & 7 \end{pmatrix}$

Question 2(a) If \mathcal{M}, \mathcal{N} are two subspaces of a vector space \mathcal{S} , then show that their dimensions satisfy

 $\dim \mathcal{M} + \dim \mathcal{N} = \dim \left(\mathcal{M} \cap \mathcal{N} \right) + \dim \left(\mathcal{M} + \mathcal{N} \right)$

Solution. See 1998 question 1(b).

Question 2(b) Find a maximal linearly independent subsystem of the system of vectors $\mathbf{v}_1 = (2, -2, -4), \mathbf{v}_2 = (1, 9, 3), \mathbf{v}_3 = (-2, -4, 1), \mathbf{v}_4 = (3, 7, -1).$

Solution. $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent because $a\mathbf{v}_1 + b\mathbf{v}_2 = (2a+b, -2a+9b, -4a+3b) = \mathbf{0} \Rightarrow a = b = 0.$

 \mathbf{v}_3 is dependent on $\mathbf{v}_1, \mathbf{v}_2$. If $\mathbf{v}_3 = a\mathbf{v}_1 + b\mathbf{v}_2$, then $(2a + b, -2a + 9b, -4a + 3b) = (-2, -4, 1) \Rightarrow a = -\frac{7}{10}, b = -\frac{6}{10}$.

Similarly \mathbf{v}_4 is dependent on $\mathbf{v}_1, \mathbf{v}_2$. If $\mathbf{v}_4 = a\mathbf{v}_1 + b\mathbf{v}_2$, then $(2a+b, -2a+9b, -4a+3b) = (3, 7, -1) \Rightarrow a = b = 1$.

Thus the maximally linearly independent set is $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Question 2(c) Show that the system of equations

$$4x + y - 2z + w = 3$$

$$x - 2y - z + 2w = 2$$

$$2x + 5y - w = -1$$

$$3x + 3y - z - 3w = 1$$

although consistent is not uniquely solvable. Determine a general solution using x as a parameter.

Solution. The coefficient matrix
$$\mathbf{A} = \begin{pmatrix} 4 & 1 & -2 & 1 \\ 1 & -2 & -1 & 2 \\ 2 & 5 & 0 & -1 \\ 3 & 3 & -1 & -3 \end{pmatrix}$$
.
The augmented matrix $\mathbf{B} = \begin{pmatrix} 4 & 1 & -2 & 1 & 3 \\ 1 & -2 & -1 & 2 & 2 \\ 2 & 5 & 0 & -1 & -1 \\ 3 & 3 & -1 & -3 & 1 \end{pmatrix}$.

Add R_2 to R_4 , and subtract R_1 , to get

$$\mathbf{A} \sim \begin{pmatrix} 4 & 1 & -2 & 1 \\ 1 & -2 & -1 & 2 \\ 2 & 5 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{B} \sim \begin{pmatrix} 4 & 1 & -2 & 1 & 3 \\ 1 & -2 & -1 & 2 & 2 \\ 2 & 5 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Since $\begin{vmatrix} 1 & -2 & 1 \\ -2 & -1 & 2 \\ 5 & 0 & -1 \end{vmatrix} = 1 - 16 + 5 \neq 0$, it follows that rank $\mathbf{A} = \operatorname{rank} \mathbf{B} = 3$, so the system

is consistent. Since rank $\mathbf{A} = 3$, the space of solutions is of dimension 1.

Subtracting the second equation from the fourth, we get 2x + 5y - 5w = -1. But 2x + 5y - w = -1, so $w - 5w = 0 \Rightarrow w = 0$.

Now y - 2z = 3 - 4x, $-2y - z = 2 - x \Rightarrow -5z = 8 - 9x \Rightarrow z = \frac{9x-8}{5}$. Now $y = 3 - 4x + 2\frac{9x-8}{5} = \frac{-2x-1}{5}$. Thus the space of solutions is $(x, \frac{-2x-1}{5}, \frac{9x-8}{5}, 0)$. The system does not have a unique solution.

Question 3(a) Show that every square matrix satisfies its characteristic equation. Using this result or otherwiseshow that if

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

then $\mathbf{A}^4 - 2\mathbf{A}^3 - 2\mathbf{A}^2 + 6\mathbf{A} - 2\mathbf{I} = \mathbf{A}$, where \mathbf{I} is the 3×3 identity matrix.

Solution. The first part is the Cayley Hamilton theorem. See 1987 Question 5(a).

The characteristic equation of \mathbf{A} is $|\mathbf{A} - x\mathbf{I}| = 0$, thus

$$\begin{vmatrix} 1-x & 0 & 2\\ 0 & -1-x & 1\\ 0 & 1 & -x \end{vmatrix} = (1-x)(x^2+x-1) = -x^3+2x-1 = 0$$

By the Cayley Hamilton Theorem, $\mathbf{A}^3 - 2\mathbf{A} + \mathbf{I} = \mathbf{0}$.

Thus $\mathbf{A}^4 = 2\mathbf{A}^2 - \mathbf{A}$, and $2\mathbf{A}^3 = 4\mathbf{A} - 2\mathbf{I}$. Hence $\mathbf{A}^4 - 2\mathbf{A}^3 - 2\mathbf{A}^2 + 6\mathbf{A} - 2\mathbf{I} = 2\mathbf{A}^2 - \mathbf{A} - 4\mathbf{A} + 2\mathbf{I} - 2\mathbf{A}^2 + 6\mathbf{A} - 2\mathbf{I} = \mathbf{A}$ as required.

- Question 3(b) 1. Show that a square matrix is singular if and only if at least one of its eigenvalues is 0.
 - 2. The rank of an $n \times n$ matrix **A** remains unchanged if it is premultiplied or postmultiplied by a nonsingular matrix, and that rank(\mathbf{XAX}^{-1}) = rank(**A**).

Solution.

1. The characteristic polynomial of \mathbf{A} is $|\mathbf{A} - x\mathbf{I}|$. Putting x = 0, we see that the constant term in the characteristic polynomial is $|\mathbf{A}|$. Thus if \mathbf{A} has 0 as an eigenvalue iff 0 is a root of the characteristic polynomial iff $|\mathbf{A}| = 0$.

2. Let
$$\mathbf{A} = \begin{pmatrix} \mathbf{R}_1 \\ \vdots \\ \mathbf{R}_m \end{pmatrix}$$
, where each \mathbf{R}_i is $1 \times n$, i.e. \mathbf{A} is $m \times n$. Now rank(\mathbf{A}) is the dimension

of the row space of A, i.e. the space generated by $\mathbf{R}_1, \ldots, \mathbf{R}_m$. Let $\mathbf{P} = (p_{ij})$ be an

 $m \times m$ nonsingular matrix. Then $\mathbf{B} = \mathbf{P}\mathbf{A} = \begin{pmatrix} p_{11}\mathbf{R}_1 + p_{12}\mathbf{R}_2 + \ldots + p_{1m}\mathbf{R}_m \\ p_{21}\mathbf{R}_1 + p_{22}\mathbf{R}_2 + \ldots + p_{2m}\mathbf{R}_m \\ \vdots \end{pmatrix}$.

Thus the rows of $\mathbf{PA} \subset$ the row space of \mathbf{A} , being linear combinations of rows of \mathbf{A} . Writing $\mathbf{A} = \mathbf{P}^{-1}\mathbf{B}$, we get that the row space of $\mathbf{A} \subset$ the row space of \mathbf{B} , so rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{B})$.

Let **Q** be non-singular $n \times n$, and **C** = **AQ**. It can be proved as above that the column space of **A** = the column space of **C**, thus rank(**A**) = rank(**C**).

Now by using the above results, $rank(\mathbf{XAX}^{-1}) = rank(\mathbf{XA}) = rank(\mathbf{A})$.

Paper II

Question 4(a) If \mathcal{V}_1 and \mathcal{V}_2 are subspaces of a vector space \mathcal{V} , then show that $\dim(\mathcal{V}_1 + \mathcal{V}_2) = \dim(\mathcal{V}_1) + \dim(\mathcal{V}_2) - \dim(\mathcal{V}_1 \cap \mathcal{V}_2)$.

Solution. See 1998, question 1(b).

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

Question 4(b) Let \mathcal{V} and \mathcal{W} be vector spaces over the same field F and dim $\mathcal{V} = n$. Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis of \mathcal{V} . Show that a map $f : \{\mathbf{e}_1, \ldots, \mathbf{e}_n\} \longrightarrow \mathcal{W}$, can be uniquely extended to a linear transformation $T : \mathcal{V} \longrightarrow \mathcal{W}$ whose restriction to the given basis is f *i.e.* $T(\mathbf{e}_i) = f(\mathbf{e}_i)$.

Solution. If $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{e}_i$, define $T(\mathbf{v}) = \sum_{i=1}^{n} a_i f(\mathbf{e}_i)$. Clearly $T(\mathbf{e}_i) = f(\mathbf{e}_i)$. If $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{e}_i$, $\mathbf{w} = \sum_{i=1}^{n} b_i \mathbf{e}_i$, then

$$T(\alpha \mathbf{v} + \beta \mathbf{w}) = T(\sum_{i=1}^{n} (\alpha a_i + \beta b_i) \mathbf{e}_i)$$

=
$$\sum_{i=1}^{n} (\alpha a_i + \beta b_i) f(\mathbf{e}_i)$$

=
$$\alpha \sum_{i=1}^{n} a_i f(\mathbf{e}_i) + \beta \sum_{i=1}^{n} b_i f(\mathbf{e}_i)$$

=
$$\alpha T(\mathbf{v}) + \beta T(\mathbf{w})$$

Thus T is a linear transformation.

If U is any other linear transformation satisfying $U(\mathbf{e}_i) = f(\mathbf{e}_i)$, then for any $\mathbf{v} = \sum_{i=1}^n a_i \mathbf{e}_i$, by linearity, $T(\mathbf{v}) = T(\sum_{i=1}^n a_i \mathbf{e}_i) = \sum_{i=1}^n a_i T(\mathbf{e}_i) = \sum_{i=1}^n a_i f(\mathbf{e}_i) = \sum_{i=1}^n a_i U(\mathbf{e}_i) = U(\mathbf{v})$. Since this is true for every \mathbf{v} , we have T = U.

- Question 5(a) 1. If A and B are two linear transformations and if A^{-1} and B^{-1} exist, show that $(AB)^{-1}$ exists and $(AB)^{-1} = B^{-1}A^{-1}$.
 - 2. Prove that similar matrices have the same characteristic polynomial and hence the same eigenvalues.
 - 3. Prove that the eigenvalues of a Hermitian matrix are real.

Solution.

- 1. Clearly $(AB)(B^{-1}A^{-1}) = AIA^{-1} = AA^{-1} = I$, $(B^{-1}A^{-1})(AB) = B^{-1}A^{-1}AB = B^{-1}B = I$. Thus AB is invertible and its inverse is $B^{-1}A^{-1}$.
- 2. If $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ then $|\lambda \mathbf{I} \mathbf{B}| = |\lambda \mathbf{P}^{-1}\mathbf{P} \mathbf{P}^{-1}\mathbf{A}\mathbf{P}| = |\mathbf{P}^{-1}||\lambda \mathbf{I} \mathbf{A}||\mathbf{P}| = |\lambda \mathbf{I} \mathbf{A}|$. Thus **A** and **B** have the same characteristic polynomial and therefore the same eigenvalues.
- 3. See 1993 question 2(c).

Question 5(b) Reduce $2x^2 + 4xy + 5y^2 + 4x + 13y - \frac{1}{4} = 0$ to canonical form. Solution.

$$LHS = 2(x + y + 1)^{2} - 2y^{2} - 2 + 5y^{2} + 9y - \frac{1}{4}$$

= $2(x + y + 1)^{2} + 3(y^{2} + 3y) - \frac{9}{4}$
= $2(x + y + 1)^{2} + 3(y + \frac{3}{2})^{2} - \frac{27}{4} - \frac{9}{4}$
= $2X^{2} + 3Y^{2} - 9$ where $X = x + y + 1, Y = y + \frac{3}{2}$

 $2X^2 + 3Y^2 - 9 = 0 \Rightarrow \frac{X^2}{9/2} + \frac{Y^2}{3} = 1$. Thus the given equation is an ellipse.

Question 5(c) Find the reciprocal of the matrix $\mathbf{T} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Then show that the

transform of the matrix $\mathbf{A} = \frac{1}{2} \begin{pmatrix} b+c & c-a & b-a \\ c-b & c+a & a-b \\ b-c & a-c & a+b \end{pmatrix}$ by \mathbf{T} i.e. \mathbf{TAT}^{-1} is a diagonal matrix. Determine the eigenvalues of the matrix A

Solution. $|\mathbf{T}| = -1(-1) + 1(1) = 2$. So

$$\mathbf{T}^{-1} = \frac{1}{2} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

Here A_{ij} denotes the cofactor of a_{ij} . Now

$$\mathbf{TAT}^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} b+c & c-a & b-a \\ c-b & c+a & a-b \\ b-c & a-c & a+b \end{pmatrix} \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 0 & 2a & 2a \\ 2b & 0 & 2b \\ 2c & 2c & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 4a & 0 & 0 \\ 0 & 4b & 0 \\ 0 & 0 & 4c \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

Thus \mathbf{TAT}^{-1} is diagonal. Now the eigenvalues of **A** and \mathbf{TAT}^{-1} are the same, so the eigenvalues of \mathbf{A} are a, b, c.