UPSC Civil Services Main 1987 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) 1. Find all the matrices which commute with the matrix $\begin{pmatrix} 7 & -3 \\ 5 & -2 \end{pmatrix}$.

2. Prove that the product of two $n \times n$ symmetric matrices is a symmetric matrix if and only if the matrices commute.

Solution.

1.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 7 & -3 \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} 7 & -3 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\Rightarrow \qquad 7a + 5b = 7a - 3c \qquad (i)$$

$$-3a - 2b = 7b - 3d \qquad (ii)$$

$$7c + 5d = 5a - 2c \qquad (iii)$$

$$-3c - 2d = 5b - 2d \qquad (iv)$$

(i) and (iv) $\Rightarrow 5b = -3c$. From (ii) we get d = a + 3b, and from (iii) we get the same thing: 5a - 9c = 5a + 15b = 5d, or d = a + 3b. Thus the required matrices are $\begin{pmatrix} a & b \\ -\frac{5}{3}b & a + 3b \end{pmatrix}$, a, b arbitrary.

2. Given $\mathbf{A}' = \mathbf{A}, \mathbf{B}' = \mathbf{B}$. Suppose $\mathbf{AB} = \mathbf{BA}$, then $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}' = \mathbf{BA} = \mathbf{AB} \Rightarrow \mathbf{AB}$ is symmetric. Let \mathbf{AB} be symmetric. Then $\mathbf{AB} = (\mathbf{AB})' = \mathbf{B}'\mathbf{A}' = \mathbf{BA}$, so \mathbf{A} and \mathbf{B} commute. Thus \mathbf{AB} is symmetric $\Leftrightarrow \mathbf{AB} = \mathbf{BA}$ when $\mathbf{A}' = \mathbf{A}, \mathbf{B}' = \mathbf{B}$.

Question 1(b) Show that the rank of the product of two square matrices \mathbf{A}, \mathbf{B} each of order n satisfies the inequality

$$r_{\mathbf{A}} + r_{\mathbf{B}} - n \le r_{\mathbf{AB}} \le \min(r_{\mathbf{A}}, r_{\mathbf{B}})$$

where $r_{\mathbf{C}}$ stands for the rank of \mathbf{C} , a square matrix.

Solution. There exists a non-singular matrix **P** such that $\mathbf{PA} = \begin{pmatrix} \mathbf{G} \\ \mathbf{0} \end{pmatrix}$, where **G** is a $r_{\mathbf{A}} \times n$ matrix of rank $r_{\mathbf{A}}$. Now $\mathbf{PAB} = \begin{pmatrix} \mathbf{G} \\ \mathbf{0} \end{pmatrix} \mathbf{B}$ has at most $r_{\mathbf{A}}$ non-zero rows obtained on multiplying $r_{\mathbf{A}}$ non-zero rows of **G** with **B**. Thus $r_{\mathbf{PAB}}$, which is the same as rank $r_{\mathbf{AB}}$ as **P** is non-singular, $\leq r_{\mathbf{A}}$.

Similarly there exists a non-singular matrix \mathbf{Q} such that $\mathbf{B}\mathbf{Q} = (\mathbf{H} \ \mathbf{0})$, where \mathbf{H} is a $n \times r_{\mathbf{B}}$ matrix of rank $r_{\mathbf{B}}$. Now $\mathbf{A}\mathbf{B}\mathbf{Q} = \mathbf{A} (\mathbf{H} \ \mathbf{0})$ has at most $r_{\mathbf{B}}$ non-zero, columns, so $r_{\mathbf{A}\mathbf{B}\mathbf{Q}} \leq r_{\mathbf{B}}$. Now $r_{\mathbf{A}\mathbf{B}\mathbf{Q}} = r_{\mathbf{A}\mathbf{B}}$ as $|\mathbf{Q}| \neq 0$, so $r_{\mathbf{A}\mathbf{B}} \leq r_{\mathbf{B}}$, hence $r_{\mathbf{A}\mathbf{B}} \leq \min(r_{\mathbf{A}}, r_{\mathbf{B}})$.

Let $S(\mathbf{A})$ denote the space generated by the vectors $\mathbf{r}_1, \ldots, \mathbf{r}_n$ where \mathbf{r}_i is the *i*th row of \mathbf{A} , then $\dim(S(\mathbf{A})) = r_{\mathbf{A}}$, similarly $\dim(S(\mathbf{B})) = r_{\mathbf{B}}$. Let S denote the space generated by the rows of \mathbf{A} and \mathbf{B} . Clearly $\dim(S) \leq \dim(S(\mathbf{A})) + \dim(S(\mathbf{B})) = r_{\mathbf{A}} + r_{\mathbf{B}}$. Clearly $S(\mathbf{A} + \mathbf{B}) \subseteq S$. Therefore $r_{\mathbf{A}+\mathbf{B}} \leq \dim(S) \leq r_{\mathbf{A}} + r_{\mathbf{B}}$.

Now there exist non-singular matrices \mathbf{P}, \mathbf{Q} such that $\mathbf{PAQ} = \begin{pmatrix} \mathbf{I}_{r_{\mathbf{A}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ or $\mathbf{A} = \mathbf{P}^{-1} \begin{pmatrix} \mathbf{I}_{r_{\mathbf{A}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{Q}^{-1}$. Let $\mathbf{C} = \mathbf{P}^{-1} \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n-r_{\mathbf{A}}} \end{pmatrix} \mathbf{Q}^{-1}$. Then $\mathbf{A} + \mathbf{C} = \mathbf{P}^{-1} \begin{pmatrix} \mathbf{I}_{r_{\mathbf{A}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n-r_{\mathbf{A}}} \end{pmatrix} \mathbf{Q}^{-1} = \mathbf{P}^{-1} \mathbf{Q}^{-1}$, so $\mathbf{A} + \mathbf{C}$ is nonsingular.

Now rank $\mathbf{B} = \operatorname{rank}((\mathbf{A} + \mathbf{C})\mathbf{B}) \leq \operatorname{rank}(\mathbf{AB}) + \operatorname{rank}(\mathbf{CB})$. But rank $(\mathbf{CB}) \leq \operatorname{rank}(\mathbf{C}) = n - r_{\mathbf{A}}$. Thus $r_{\mathbf{B}} \leq r_{\mathbf{AB}} + n - r_{\mathbf{A}} \Rightarrow r_{\mathbf{A}} + r_{\mathbf{B}} - n \leq r_{\mathbf{AB}}$. Hence $r_{\mathbf{A}} + r_{\mathbf{B}} - n \leq r_{\mathbf{AB}} \leq \min(r_{\mathbf{A}}, r_{\mathbf{B}})$.

Question 1(c) If $1 \le a \le 5$, find the rank of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & a \\ 2 & 2a - 2 & -a - 2 & 3a - 1 \\ 3 & a + 2 & -3 & 2a + 1 \end{pmatrix}$$

Solution.
$$|\mathbf{A}| = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -3 & a-1 \\ 2 & 2a-4 & -a-4 & 3a-3 \\ 3 & a-1 & -6 & 2a-2 \end{vmatrix}$$
 by carrying out the operations $\mathbf{C}_2 - \mathbf{C}_1, \mathbf{C}_3 - \mathbf{C}_1, \mathbf{C}_4 - \mathbf{C}_1$. Thus $|\mathbf{A}| = (a-1) \begin{vmatrix} 2 & -3 & 1 \\ 2a-4 & -a-4 & 3 \\ a-1 & -6 & 2 \end{vmatrix} = (a-1) \begin{vmatrix} 0 & 0 & 1 \\ 2a-10 & -a+5 & 3 \\ a-5 & 0 & 2 \end{vmatrix} = (a-1)(a-5)^2.$

Thus $|\mathbf{A}| \neq 0$ when $a \neq 1, a \neq 5$. So for 1 < a < 5, rank $\mathbf{A} = 4$. If a = 5,

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 5 \\ 2 & 8 & -7 & 14 \\ 3 & 7 & -3 & 11 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -3 & 4 \\ 2 & 6 & -9 & 12 \\ 3 & 4 & -6 & 8 \end{pmatrix} \qquad (\mathbf{C}_2 - \mathbf{C}_1, \mathbf{C}_3 - \mathbf{C}_1, \mathbf{C}_4 - \mathbf{C}_1)$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & -3 & 4 \\ 0 & 6 & -9 & 12 \\ 0 & 4 & -6 & 8 \end{pmatrix} \qquad (\mathbf{R}_2 - \mathbf{R}_1, \mathbf{R}_3 - 2\mathbf{R}_1, \mathbf{R}_4 - 3\mathbf{R}_1)$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & -3 & 4 \\ 0 & 6 & -9 & 12 \\ 0 & 4 & -6 & 8 \end{pmatrix} \qquad (\mathbf{R}_3 - 3\mathbf{R}_2, \mathbf{R}_4 - 2\mathbf{R}_2)$$

which has rank 2, as $\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} \neq 0$, showing that rank of **A** is 2 when a = 5. If a = 1,

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -3 & 0 \\ 2 & -2 & -5 & 0 \\ 3 & 0 & -6 & 0 \end{pmatrix} \qquad (\mathbf{C}_2 - \mathbf{C}_1, \mathbf{C}_3 - \mathbf{C}_1, \mathbf{C}_4 - \mathbf{C}_1)$$

which has rank 3 since $\begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 2 & -2 & -5 \end{vmatrix} \neq 0$, showing that rank of **A** is 3 when a = 1.

Question 2(a) If the eigenvalues of a matrix \mathbf{A} are $\lambda_j, j = 1, 2, ..., n$ and if f(x) is a polynomial in x, show that the eigenvalues of the polynomial $f(\mathbf{A})$ are $f(\lambda_j), j = 1, 2, ..., n$.

Solution. Let \mathbf{x}_r be an eigenvector of λ_r . Then $\mathbf{A}^k \mathbf{x}_r = \mathbf{A}^{k-1}(\mathbf{A}\mathbf{x}_r) = \lambda_r \mathbf{A}^{k-1} \mathbf{x}_r = \ldots = \lambda_r^k \mathbf{x}_r$. Thus the eigenvalues of \mathbf{A}^k are $\lambda_i^k, j = 1, 2, \ldots, n$.

Let $f(x) = a_0 + a_1 x + \ldots + a_m x^m$. Then $(a_0 \mathbf{I} + a_1 \mathbf{A} + \ldots + a_m \mathbf{A}^m) \mathbf{x}_r = (a_0 + a_1 \lambda_r + \ldots + a_m \lambda_r^m) \mathbf{x}_r = f(\lambda_r) \mathbf{x}_r$. Thus the eigenvalues of $f(\mathbf{A})$ are $f(\lambda_j), j = 1, 2, \ldots n$.

Question 2(b) If A is skew-symmetric, then show that $(I - A)(I + A)^{-1}$, where I is the corresponding identity matrix, is orthogonal.

Hence construct an orthogonal matrix if $\mathbf{A} = \begin{pmatrix} 0 & \frac{a}{b} \\ -\frac{a}{b} & 0 \end{pmatrix}$.

Solution. For the orthogonality of $(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1}$, see question 2(a) of 1999.

$$\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & -\frac{a}{b} \\ \frac{a}{b} & 1 \end{pmatrix}, \text{ and } \mathbf{I} + \mathbf{A} = \begin{pmatrix} 1 & \frac{a}{b} \\ -\frac{a}{b} & 1 \end{pmatrix} \Rightarrow (\mathbf{I} + \mathbf{A})^{-1} = \frac{b}{a^2 + b^2} \begin{pmatrix} b & -a \\ a & b \end{pmatrix}.$$

Thus $(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} b & -a \\ a & b \end{pmatrix} \begin{pmatrix} b & -a \\ a & b \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} b^2 - a^2 & -2ab \\ 2ab & b^2 - a^2 \end{pmatrix} = \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & \frac{-2ab}{a^2 + b^2} \\ \frac{2ab}{a^2 + b^2} & \frac{b^2 - a^2}{a^2 + b^2} \end{pmatrix},$
which is the required orthogonal matrix.

which is the required orthogonal matrix.

Question 2(c) 1. If A and B are arbitrary square matrices of which A is non-singular, show that AB and BA have the same characteristic polynomial.

2. Show that a real matrix **A** is orthogonal if and only if $|\mathbf{A}\mathbf{x}| = |\mathbf{x}|$ for all \mathbf{x} .

Solution.

- 1. $\mathbf{B}\mathbf{A} = \mathbf{A}^{-1}\mathbf{A}\mathbf{B}\mathbf{A}$. Thus the characteristic polynomial of $\mathbf{B}\mathbf{A}$ is $|\mathbf{x}\mathbf{I} \mathbf{B}\mathbf{A}| = |\mathbf{x}\mathbf{A}^{-1}\mathbf{A} \mathbf{A}^{-1}\mathbf{A}\mathbf{B}\mathbf{A}| = |\mathbf{A}^{-1}||\mathbf{x}\mathbf{I} \mathbf{A}\mathbf{B}||\mathbf{A}| = |\mathbf{x}\mathbf{I} \mathbf{A}\mathbf{B}|$ which is the characteristic polynomial of $\mathbf{A}\mathbf{B}$.
- 2. If **A** is orthogonal, i.e. $\mathbf{A'A} = \mathbf{I}$, then $|\mathbf{Ax}| = \sqrt{\mathbf{x'A'Ax}} = \sqrt{\mathbf{x'x}} = |\mathbf{x}|$. Conversely $|\mathbf{Ax}| = |\mathbf{x}| \Rightarrow \mathbf{x'A'Ax} = \mathbf{x'x} \Rightarrow \mathbf{x'}(\mathbf{A'A} - \mathbf{I})\mathbf{x} = 0$ for all **x**. Thus $\mathbf{A'A} - \mathbf{I} = \mathbf{0}$, so **A** is orthogonal.

Note that is $\mathbf{A} = (a_{ij})$ is symmetric, and $\sum_{i,j=1}^{n} a_{ij} x_i x_j = 0$ for all \mathbf{x} , then choose $\mathbf{x} = \mathbf{e_i}$ to get $\mathbf{e'_i A e_i} = a_{ii} = 0$, and choose $\mathbf{x} = \mathbf{e_i} + \mathbf{e_j}$ to get $0 = \mathbf{x' A x} = a_{ii} + 2a_{ij} + a_{jj} = 2a_{ij} \Rightarrow a_{ij} = 0$. (Here $\mathbf{e_i}$ is the *i*-th unit vector.) Thus $\mathbf{A} = \mathbf{0}$.

Question 3(a) Show that a necessary and sufficient condition for a system of linear equations to be consistent is that the rank of the coefficient matrix is equal to the rank of the augmented matrix. Hence show that the system

$$x + 2y + 5z + 9 = 0$$

$$x - y + 3z - 2 = 0$$

$$3x - 6y - z - 25 = 0$$

is consistent and has a unique solution. Determine this solution.

Solution. Let the system be $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is $m \times n$, \mathbf{x} is $n \times 1$ and \mathbf{b} is $m \times 1$. Let rank $\mathbf{A} = r$. $\mathbf{A} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n]$ where each \mathbf{c}_j is an $m \times 1$ column. We can assume without loss of generality that $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r$ are linearly independent, $r = \operatorname{rank} \mathbf{A}$. The system is now

$$x_1\mathbf{c_1} + x_2\mathbf{c_2} + \ldots + x_n\mathbf{c_n} = \mathbf{b}$$

, where $\mathbf{x}' = (x_1, \ldots, x_n)$. Suppose rank($[\mathbf{A} \mathbf{b}]$) = r. This means that out of n + 1 columns, exactly r are independent. But by assumption, $\mathbf{c_1}, \mathbf{c_2}, \ldots, \mathbf{c_r}$ are linearly independent, therefore these vectors form a basis for the column space of $[\mathbf{A} \mathbf{b}]$. Consequently there exist $\alpha_1, \ldots, \alpha_r$ such that $\alpha_1 \mathbf{c_1} + \alpha_2 \mathbf{c_2} + \ldots + \alpha_r \mathbf{c_r} = \mathbf{b}$. This gives us the required solution $\{\alpha_1, \ldots, \alpha_r, 0, \ldots, 0\}$ to the linear system.

Conversely, let the system be consistent. Let $\mathbf{A} = [\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}]$ as before, with $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r}$ linearly independent, $r = \operatorname{rank} \mathbf{A}$. Since the column space of \mathbf{A} , i.e. the space generated by $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}$ has dimension r, each c_j for $r + 1 \leq j \leq n$ is linearly dependent on $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r}$. Since there exist $\alpha_1, \dots, \alpha_n$ such that $\alpha_1\mathbf{c_1} + \alpha_2\mathbf{c_2} + \dots + \alpha_n\mathbf{c_n} = \mathbf{b}$, \mathbf{b} is a linear combination of $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}$. But each c_j for $r + 1 \leq j \leq n$ is a linear combination of $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r}$, therefore \mathbf{b} is a linear combination of $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_r}$. Thus the space generated by $\{\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}, \mathbf{b}\}$ also has dimension r, so $\operatorname{rank}([\mathbf{A} \mathbf{b}]) = r = \operatorname{rank} \mathbf{A}$.

The coefficient matrix $\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 \\ 1 & -1 & 3 \\ 3 & -6 & -1 \end{pmatrix}$. $|\mathbf{A}| = 24 \neq 0$, so rank $\mathbf{A} = 3$. The aug-

mented matrix
$$\mathbf{B} = \begin{pmatrix} 1 & 2 & 5 & -9 \\ 1 & -1 & 3 & 2 \\ 3 & -6 & -1 & 25 \end{pmatrix}$$
 has rank ≤ 3 , but since $\begin{vmatrix} 1 & 2 & 5 \\ 1 & -1 & 3 \\ 3 & -6 & -1 \end{vmatrix} \neq 0$, it has rank 3. Thus the given system is consistent

rank 3. Thus the given system is consistent.

Subtracting the second equation from the first we get 3y + 2z + 11 = 0. Subtracting 3 times the second equation from the third, we get 3y + 10z + 19 = 0. Clearly $z = -1, y = -3 \Rightarrow x = 2$. Thus (2, -3, -1) is the unique solution. In fact the only solution of the system is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} -9 \\ 2 \\ 25 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$$

Question 3(b) In an n-dimensional vector space the system of vectors \mathbf{x}_j , j = 1, ..., r are linearly independent and can be expressed linearly in terms of the vectors \mathbf{y}_k , k = 1, ..., s. Show that $r \leq s$.

Find a maximal linearly independent subsystem of the linear forms

$$f_{1} = x + 2y + z + 3t$$

$$f_{2} = 4x - y - 5z - 6t$$

$$f_{3} = x - 3y - 4z - 7t$$

$$f_{4} = 2x + y - z$$

Solution. Let \mathcal{W} be the subspace spanned by $\mathbf{y}_k, k = 1, \ldots, s$. Then dim $\mathcal{W} \leq s$. Since $\mathbf{x}_j \in \mathcal{W}, j = 1, \ldots, r$ because \mathbf{x}_j is a linear combination of $\mathbf{y}_k, k = 1, \ldots, s$, and $\mathbf{x}_j, j = 1, \ldots, r$ are linearly independent, dim $\mathcal{W} \geq r \Rightarrow r \leq s$.

Clearly f_1 and f_4 are linearly independent. f_2 is linearly expressible in terms of f_1 and f_4 because $f_2 = af_1 + bf_4 \Rightarrow a + 2b = 4$, 2a + b = -1, a - b = 5, $3a = -6 \Rightarrow a = -2$, b = 3 satisfy all four, hence $f_2 = -2f_1 + 3f_4$. Similarly $f_3 = -\frac{7}{3}f_1 + \frac{5}{3}f_4$. Thus $\{f_1, f_4\}$ is a maximally independent subsystem.

Paper II

Question 4(a) Let $T : \mathcal{V} \longrightarrow \mathcal{W}$ be a linear transformation. If \mathcal{V} is finite dimensional, show that

 $\operatorname{rank} T + \operatorname{nullity} T = \dim \mathcal{V}$

Solution. See question 1(a) of 1992.

Question 4(b) Prove that two finite dimensional vector spaces \mathcal{V}, \mathcal{W} over the same field \mathcal{F} are isomorphic if they are of the same dimension n.

Solution. Let dim $\mathcal{V} = \dim \mathcal{W} = n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be a basis of \mathcal{V} , and $\mathbf{w}_1, \ldots, \mathbf{w}_n$ be a basis of \mathcal{W} . Define $T : \mathcal{V} \longrightarrow \mathcal{W}$ by $T(\mathbf{v}_i) = \mathbf{w}_i$ and if $\mathbf{v} \in \mathcal{V}, \mathbf{v} = \sum_{i=1}^n a_i \mathbf{v}_i, a_i \in \mathbb{R}$ then $T(\mathbf{v}) = \sum_{i=1}^n a_i T(\mathbf{v}_i)$. Then

1. T is a linear transformation. If $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$, $\mathbf{u} = \sum_{i=1}^{n} b_i \mathbf{v}_i$ then

$$T(\alpha \mathbf{v} + \beta \mathbf{u}) = T(\sum_{i=1}^{n} (\alpha a_i + \beta b_i) T(\mathbf{v}_i))$$
$$= \sum_{i=1}^{n} (\alpha a_i + \beta b_i) T(\mathbf{v}_i)$$
$$= \alpha \sum_{i=1}^{n} a_i T(\mathbf{v}_i) + \beta \sum_{i=1}^{n} b_i T(\mathbf{v}_i)$$
$$= \alpha T(\mathbf{v}) + \beta T(\mathbf{u})$$

2. *T* is 1-1. Let $T(\mathbf{v}) = \mathbf{0}$, where $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$. Then $\mathbf{0} = T(\mathbf{v}) = \sum_{i=1}^{n} a_i T(\mathbf{v}_i) = \sum_{i=1}^{n} a_i \mathbf{w}_i \Rightarrow a_i = 0, i = 1, \dots, n$, because $\mathbf{w}_1, \dots, \mathbf{w}_n$ are linearly independent. Thus $T(\mathbf{v}) = \mathbf{0} \Rightarrow \mathbf{v} = \mathbf{0}$.

3. T is onto. If $\mathbf{w} \in \mathcal{W}$ and $\mathbf{w} = \sum_{i=0}^{n} b_i \mathbf{w}_i$, then $T(\mathbf{v}) = \mathbf{w}$ where $\mathbf{v} = \sum_{i=1}^{n} b_i \mathbf{v}_i$.

Note: The converse of 4(b) is also true i.e. if $T : \mathcal{V} \longrightarrow \mathcal{W}$ is an isomorphism i.e. \mathcal{V}, \mathcal{W} are isomorphic, then dim $\mathcal{V} = \dim \mathcal{W}$.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be a basis of \mathcal{V} . Then $\{\mathbf{w}_1 = T(\mathbf{v}_1), \ldots, \mathbf{w}_n = T(\mathbf{v}_n)\}$ is a basis of \mathcal{W} . $\mathbf{w}_1, \ldots, \mathbf{w}_n$ are linearly independent. If $\sum_{i=0}^n b_i \mathbf{w}_i = \mathbf{0}$, then $\sum_{i=0}^n b_i T \mathbf{v}_i = \mathbf{0} \Rightarrow$ $T(\sum_{i=0}^n b_i \mathbf{v}_i) = \mathbf{0} \Rightarrow \sum_{i=0}^n b_i \mathbf{v}_i = \mathbf{0} \Rightarrow b_i = 0$ for $1 \le i \le n$, because $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

 $\mathbf{w}_1, \ldots, \mathbf{w}_n$ generate W. If $\mathbf{w} \in \mathcal{W}$, then there exists a $\mathbf{v} \in \mathcal{V}$ such that $T(\mathbf{v}) = \mathbf{w}$, because T is onto. Let $\mathbf{v} = \sum_{i=0}^n b_i \mathbf{v}_i$, then $\mathbf{w} = T(\mathbf{v}) = T(\sum_{i=0}^n b_i \mathbf{v}_i) = \sum_{i=0}^n b_i T(\mathbf{v}_i) = \sum_{i=0}^n b_i \mathbf{w}_i$.

Question 5(a) Prove that every square matrix is the root of its characteristic polynomial.

Solution. This is the Cayley Hamilton Theorem. Let \mathbf{A} be a matrix of order n. Let

$$|\mathbf{A} - x\mathbf{I}| = a_o + a_1x + \ldots + a_nx^n$$

Then we wish to show that

$$a_o \mathbf{I} + a_1 \mathbf{A} + \ldots + a_n \mathbf{A}^n = \mathbf{0}$$

Suppose the adjoint of $\mathbf{A} - x\mathbf{I}$ is $\mathbf{B}_0 + \mathbf{B}_1 x + \ldots + \mathbf{B}_{n-1} x^{n-1}$, where \mathbf{B}_i are matrices of order n. Then by definition of the adjoint,

$$(\mathbf{A} - x\mathbf{I})(\mathbf{B}_0 + \mathbf{B}_1x + \ldots + \mathbf{B}_{n-1}x^{n-1}) = |\mathbf{A} - x\mathbf{I}|\mathbf{I}$$

Substituting for $|\mathbf{A} - x\mathbf{I}|$ the expression $a_o + a_1x + \ldots + a_nx^n$ and equating coefficients of like powers, we get

$$\mathbf{AB}_{0} = a_{o}\mathbf{I}$$
$$\mathbf{AB}_{1} - \mathbf{B}_{0} = a_{1}\mathbf{I}$$
$$\mathbf{AB}_{2} - \mathbf{B}_{1} = a_{2}\mathbf{I}$$
$$\dots$$
$$\mathbf{AB}_{n-1} - \mathbf{B}_{n-2} = a_{n-1}\mathbf{I}$$
$$-\mathbf{B}_{n-1} = a_{n}\mathbf{I}$$

Multiplying these equations successively by $\mathbf{I}, \mathbf{A}, \mathbf{A}^2, \dots, \mathbf{A}^n$ on the left and adding, we get $\mathbf{0} = a_o \mathbf{I} + a_1 \mathbf{A} + \ldots + a_n \mathbf{A}^n$, which was to be proved.

Question 5(b) Determine the eigenvalues and the corresponding eigenvectors of

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

Solution.

$$\begin{aligned} |\lambda \mathbf{I} - \mathbf{A}| &= \begin{vmatrix} \lambda - 2 & -2 & -1 \\ -1 & \lambda - 3 & -1 \\ -1 & -2 & \lambda -2 \end{vmatrix} = 0 \\ \Rightarrow & (\lambda - 2)^2 (\lambda - 3) - 2(\lambda - 2) + 2(-\lambda + 2) - 2 - 2 - (\lambda - 3) = 0 \\ \Rightarrow & (\lambda^2 - 4\lambda + 4)(\lambda - 3) - 5\lambda + 7 = 0 \\ \Rightarrow & \lambda^3 - 7\lambda^2 + 11\lambda - 5 = (\lambda - 1)(\lambda^2 - 6\lambda + 5) = 0 \\ \Rightarrow & \lambda = 1, 5, 1 \end{aligned}$$

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 5$. Then

$$\begin{pmatrix} 3 & -2 & -1 \\ -1 & 2 & -1 \\ -1 & -2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $3x_1 - 2x_2 - x_3 = 0$, $-x_1 + 2x_2 - x_3 = 0$, $-x_1 - 2x_2 + 3x_3 = 0 \Rightarrow x_1 = x_2 = x_3$. Thus (1, 1, 1) is an eigenvector for $\lambda = 5$. In fact (x, x, x) with $x \neq 0$ are eigenvectors for $\lambda = 5$.

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 1$. Then

$$\begin{pmatrix} -1 & -2 & -1 \\ -1 & -2 & -1 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $x_1 + 2x_2 + x_3 = 0$. We can take $\mathbf{x_1} = (1, 0, -1)$ and $\mathbf{x_2} = (0, 1, -2)$ as eigenvectors for $\lambda = 1$. These are linearly independent, and all eigenvectors for $\lambda = 1$ are linear combinations of $\mathbf{x_1}, \mathbf{x_2}$.

Let
$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
. Then $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Question 5(c) Let A and B be n square matrices over F. Show that AB and BA have the same eigenvalues.

Solution. If A is non-singular, then

$$\mathbf{B}\mathbf{A} = \mathbf{A}^{-1}\mathbf{A}\mathbf{B}\mathbf{A} \Rightarrow |x\mathbf{I} - \mathbf{B}\mathbf{A}| = |x\mathbf{A}^{-1}\mathbf{A} - \mathbf{A}^{-1}\mathbf{A}\mathbf{B}\mathbf{A}| = |\mathbf{A}^{-1}||x\mathbf{I} - \mathbf{A}\mathbf{B}||\mathbf{A}| = |x\mathbf{I} - \mathbf{A}\mathbf{B}||\mathbf{A}|$$

Thus the characteristic polynomials of **AB** and **BA** are the same, so they have the same eigenvalues.

istic roots of **BA** are the same as those of **B**₁, along with 0 repeated n - r times. Thus **BA** and **AB** have the same characteristic roots.