UPSC Civil Services Main 1989 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Find a basis for the null space of the matrix $\mathbf{A} = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

Solution. A is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by $\mathbf{A}(\mathbf{e_1}) = 3\mathbf{e_1^*}$, $\mathbf{A}(\mathbf{e_2}) = \mathbf{e_1^*} + \mathbf{e_2^*}$, $\mathbf{A}(\mathbf{e_3}) = -\mathbf{e_1^*} + 2\mathbf{e_2^*}$, where $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ is the standard basis of \mathbb{R}^3 and $\mathbf{e_1^*}, \mathbf{e_2^*}$ is the standard basis of \mathbb{R}^2 . Thus $\mathbf{A}(a, b, c) = \mathbf{e_1^*}(3a + b - c) + \mathbf{e_2^*}(b + 2c)$. Consequently, $(a, b, c) \in$ null space of \mathbf{A} if and only if $3a + b - c = 0, b + 2c = 0 \Rightarrow b = -2c, a = c$. Thus null space of \mathbf{A} is $\{(c, -2c, c) \mid c \in \mathbb{R}\}$. Note that rank $\mathbf{A} = 2$, so the null space has dimension 1. A basis for the null space is (1, -2, 1), any other multiple of this can also be regarded as a basis.

Question 1(b) If \mathcal{W} is a subspace of a finite dimensional vector space \mathcal{V} then prove that $\dim \mathcal{V}/\mathcal{W} = \dim \mathcal{V} - \dim \mathcal{W}$.

Solution. Let $\mathbf{v_1}, \ldots, \mathbf{v_r}$ be a basis of \mathcal{W} , dim $\mathcal{W} = r$. Let $\mathbf{v_{r+1}}, \ldots, \mathbf{v_n}$ be n-r vectors in \mathcal{V} so chosen that $\mathbf{v_1}, \ldots, \mathbf{v_n}$ is a basis of \mathcal{V} , dim $\mathcal{V} = n$. We will show that $\mathbf{v_i} + \mathcal{W}, r+1 \le i \le n$ is a basis of $\mathcal{V}/\mathcal{W} \Rightarrow \dim \mathcal{V}/\mathcal{W} = n-r$.

First we show linear independence:

$$\sum_{i=r+1}^{n} \alpha_{i} (\mathbf{v_{i}} + \mathcal{W}) = 0$$

$$\Rightarrow \sum_{i=r+1}^{n} \alpha_{i} \mathbf{v_{i}} + \mathcal{W} = \mathbf{0} + \mathcal{W}$$

$$\Rightarrow \sum_{i=r+1}^{n} \alpha_{i} \mathbf{v_{i}} \in \mathcal{W}$$

$$\Rightarrow \sum_{i=r+1}^{n} \alpha_{i} \mathbf{v_{i}} = \sum_{i=1}^{r} -\alpha_{i} \mathbf{v_{i}} \text{ (say)}$$

$$\Rightarrow \sum_{i=1}^{n} \alpha_{i} \mathbf{v_{i}} = \mathbf{0}$$

$$\Rightarrow \alpha_{i} = 0, 1 \leq i \leq n \text{ (v_{i} are linearly independent.)}$$

Thus $\mathbf{v_i} + \mathcal{W}, r+1 \leq i \leq n$ are linearly independent.

If $\mathbf{v} + \mathcal{W}$ is any element of \mathcal{V}/\mathcal{W} , then $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v_i}$ as $\mathbf{v} \in \mathcal{V}$. Therefore $\mathbf{v} + \mathcal{W} = \sum_{i=1}^{n} \alpha_i \mathbf{v_i} + \mathcal{W} = \sum_{i=1}^{n} \alpha_i (\mathbf{v_i} + \mathcal{W}) = \sum_{i=r+1}^{n} \alpha_i (\mathbf{v_i} + \mathcal{W})$ because $\mathbf{v_1} + \mathcal{W} = \dots = \mathbf{v_r} + \mathcal{W} = \mathcal{W}$. Thus $\mathbf{v_i} + \mathcal{W}, r+1 \le i \le n$ generate \mathcal{V}/\mathcal{W} . Hence $\dim \mathcal{V}/\mathcal{W} = n-r = \dim \mathcal{V} - \dim \mathcal{W}$

Question 1(c) Show that all vectors (x_1, x_2, x_3, x_4) in the vector space $\mathcal{V}_4(\mathbb{R})$ which obey $x_4-x_3 = x_2-x_1$ form a subspace \mathcal{V} . Show further that \mathcal{V} is spanned by $\xi_1 = (1, 0, 0, -1), \xi_2 = (0, 1, 0, 1), \xi_3 = (0, 0, 1, 1).$

Solution. If $\mathbf{y} = (y_1, y_2, y_3, y_4), \mathbf{z} = (z_1, z_2, z_3, z_4) \in \mathcal{V}$ then $\alpha \mathbf{y} + \beta \mathbf{z} = (a_1, a_2, a_3, a_4) \in \mathcal{V}$ because

$$a_4 - a_3 = (\alpha y_4 + \beta z_4) - (\alpha y_3 + \beta z_3)$$

= $\alpha (y_4 - y_3) + \beta (z_4 - z_3)$
= $\alpha (y_2 - y_1) + \beta (z_2 - z_1)$ $\therefore y_4 - y_3 = y_2 - y_1, z_4 - z_3 = z_2 - z_1$
= $a_2 - a_1$

Thus \mathcal{V} is a subspace of $\mathcal{V}_4(\mathbb{R})$. Note that $\mathcal{V} \neq \emptyset$.

Clearly ξ_1, ξ_2, ξ_3 are linearly independent $\Rightarrow \dim \mathcal{V} \geq 3$. But $\mathcal{V} \neq \mathcal{V}_4(\mathbb{R})$ because $(1, 0, 0, 0) \notin \mathcal{V} := \dim \mathcal{V} < 4 \Rightarrow \dim \mathcal{V} = 3$.

Hence ξ_1, ξ_2, ξ_3 is a basis of \mathcal{V} and therefore span \mathcal{V} .

Question 2(a) Let **P** be a real skew-symmetric matrix and **I** the corresponding unit matrix. Show that $\mathbf{I} - \mathbf{P}$ is non-singular. Also show that $\mathbf{Q} = (\mathbf{I} + \mathbf{P})(\mathbf{I} - \mathbf{P})^{-1}$ is orthogonal.

Solution. We have proved (question 2(a), year 1998) that the eigenvalues of a skew-Hermitian and therefore of a skew-symmetric matrix are zero or pure imaginary. This means $|\mathbf{I} - \mathbf{P}| \neq 0$ because 1 cannot be an eigenvalue of \mathbf{P} .

 $\mathbf{Q}'\mathbf{Q} = [(\mathbf{I} - \mathbf{P})^{-1}]'(\mathbf{I} + \mathbf{P})'(\mathbf{I} + \mathbf{P})(\mathbf{I} - \mathbf{P})^{-1} = (\mathbf{I} + \mathbf{P})^{-1}(\mathbf{I} - \mathbf{P})(\mathbf{I} + \mathbf{P})(\mathbf{I} - \mathbf{P})^{-1}.$ But $(\mathbf{I} - \mathbf{P})(\mathbf{I} + \mathbf{P}) = \mathbf{I} - \mathbf{P}^2 = (\mathbf{I} + \mathbf{P})(\mathbf{I} - \mathbf{P}),$ therefore $\mathbf{Q}'\mathbf{Q} = \mathbf{I}.$ Similarly $\mathbf{Q}\mathbf{Q}' = \mathbf{I} \Rightarrow \mathbf{Q}$ is orthogonal.

Related Results:

1. If **S** is skew-Hermitian, then $\mathbf{A} = (\mathbf{I} + \mathbf{S})(\mathbf{I} - \mathbf{S})^{-1}$ is unitary. Conversely, if **A** is unitary, then **A** can be written as $\mathbf{A} = (\mathbf{I} + \mathbf{S})(\mathbf{I} - \mathbf{S})^{-1}$ for some skew-Hermitian matrix **S** provided -1 is not an eigenvalue of **A**.

Proof:

$$\overline{\mathbf{A}}' = (\overline{(\mathbf{I} - \mathbf{S})^{-1}})'\overline{(\mathbf{I} + \mathbf{S})}' = (\mathbf{I} - \overline{\mathbf{S}}')^{-1}(\mathbf{I} + \overline{\mathbf{S}}')$$

= $(\mathbf{I} + \mathbf{S})^{-1}(\mathbf{I} - \mathbf{S})$
 $\therefore \mathbf{A}\overline{\mathbf{A}}' = (\mathbf{I} + \mathbf{S})(\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})^{-1}(\mathbf{I} - \mathbf{S})$
= $(\mathbf{I} + \mathbf{S})(\mathbf{I} + \mathbf{S})^{-1}(\mathbf{I} - \mathbf{S}) = \mathbf{I}$
 $\therefore (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})^{-1} = (\mathbf{I} - \mathbf{S}^2)^{-1} = (\mathbf{I} + \mathbf{S})^{-1}(\mathbf{I} - \mathbf{S})^{-1}$

Similarly $\overline{\mathbf{A}}'\mathbf{A} = \mathbf{I}$, so \mathbf{A} is unitary.

Now $\mathbf{A}(\mathbf{I} - \mathbf{S}) = \mathbf{I} + \mathbf{S} \Rightarrow \mathbf{A} - \mathbf{I} = (\mathbf{A} + \mathbf{I})\mathbf{S} \Rightarrow \mathbf{S} = (\mathbf{A} + \mathbf{I})^{-1}(\mathbf{A} - \mathbf{I})$. It can be checked as above that \mathbf{S} is skew-Hermitian. Note that $|\mathbf{A} + \mathbf{I}| \neq 0$.

- 2. If **H** is Hermitian, then $\mathbf{A} = (\mathbf{H} + i\mathbf{I})^{-1}(\mathbf{H} i\mathbf{I})$ is unitary and every unitary matrix can be thus represented provided it does not have -1 as its eigenvalue.
- 3. If **S** is real, $\mathbf{S}' = -\mathbf{S}$ and $\mathbf{S}^2 = -\mathbf{I}$, then **S** is orthogonal and of even order, and there exist non-null vectors \mathbf{x}, \mathbf{y} such that $\mathbf{x}'\mathbf{x} = \mathbf{y}'\mathbf{y} = 1$, $\mathbf{x}'\mathbf{y} = 0$, $\mathbf{S}\mathbf{x} + \mathbf{y} = \mathbf{0}$, $\mathbf{S}\mathbf{y} = \mathbf{x}$.

Proof: $\mathbf{S}'\mathbf{S} = -\mathbf{S}\mathbf{S} = \mathbf{I}$, so \mathbf{S} is orthogonal, $|\mathbf{S}| \neq 0 \Rightarrow \mathbf{S}$ is of even order.

Choose \mathbf{y} such that $\mathbf{y'y} = 1$. Then $\mathbf{y'Sy} = (\mathbf{y'Sy})' = \mathbf{y'S'y} = -\mathbf{y'Sy} \Rightarrow \mathbf{y'Sy} = 0$. Set $\mathbf{x} = \mathbf{Sy}$, then $\mathbf{y'x} = 0$, $\mathbf{Sx} + \mathbf{y} = \mathbf{0}$. In addition, $\mathbf{x'x} = \mathbf{y'S'Sy} = \mathbf{y'y} = 1$.

Question 2(b) Show that an $n \times n$ matrix A is similar to a diagonal matrix if and only if the set of eigenvectors of A includes a set of n linearly independent vectors.

Solution. See question 2(c) of 1998.

Question 2(c) Let r_1, r_2 be distinct eigenvalues of a matrix **A** and let ξ_i be an eigenvector corresponding to $r_i, i = 1, 2$. If **A** is Hermitian, show that $\overline{\xi_1}' \xi_2 = 0$.

Solution. See question 2(c) of 1993.

Question 3(a) Find the roots of the equation $|x\mathbf{A} - \mathbf{B}| = 0$ where $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}$, and $\mathbf{B} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$. Use the result to show that the real quadratic forms $F = x_1^2 + 2x_1x_2 + 4x_2^2$, $G = 6x_1x_2$ can be simultaneously reduced by a non-singular linear substitution to $y_1^2 + y_2^2, y_1^2 - 3y_2^2$.

Solution. $|x\mathbf{A} - \mathbf{B}| = \begin{vmatrix} x & x - 3 \\ x - 3 & 4x \end{vmatrix} = 4x^2 - (x - 3)^2 \Rightarrow \pm 2x = x - 3 \Rightarrow x = -3, 1.$ Let $\mathbf{x_1} = (x_1, x_2)$ be a row vector such that $(\mathbf{A} - \mathbf{B}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0}.$

$$\begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0} \Rightarrow x_1 - 2x_2 = 0$$

We take $x_1 = 2, x_2 = 1$, so $\mathbf{x_1} = (2, 1)$.

Let $\mathbf{x_2} = (x_1, x_2)$ be a row vector such that $(-3\mathbf{A} - \mathbf{B})\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0}$.

$$\begin{pmatrix} -3 & -6\\ -6 & -12 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \mathbf{0} \Rightarrow x_1 + 2x_2 = 0$$

We take $x_1 = -2, x_2 = 1$, so $\mathbf{x_2} = (-2, 1)$. $\mathbf{x_1}\mathbf{Ax'_1} = (2, 1) \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = (2, 1) \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 12$. $\mathbf{x_2}\mathbf{Ax'_2} = (-2, 1) \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = (-2, 1) \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 4$. Note that $\mathbf{x_1}\mathbf{Ax'_2} = 0$. $\mathbf{x_1}\mathbf{Bx'_1} = (2, 1) \begin{pmatrix} 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = (2, 1) \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 12$. $\mathbf{x_2}\mathbf{Bx'_2} = (-2, 1) \begin{pmatrix} 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = (-2, 1) \begin{pmatrix} 3 \\ -6 \end{pmatrix} = -12$. Note that $\mathbf{x_1}\mathbf{Bx'_2} = 0$.

Thus if $\mathbf{P} = [\mathbf{x_1}', \mathbf{x_2}']$, then $\mathbf{P}'\mathbf{AP} = \begin{pmatrix} 12 & 0 \\ 0 & 4 \end{pmatrix}$, and $\mathbf{P}'\mathbf{BP} = \begin{pmatrix} 12 & 0 \\ 0 & -12 \end{pmatrix}$. Let $\mathbf{Q} = \begin{pmatrix} \frac{1}{\sqrt{12}} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$, then $\mathbf{Q}'\mathbf{P}'\mathbf{APQ} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{Q}'\mathbf{P}'\mathbf{BPQ} = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$ as desired. Thus the required non-singular linear transformation is \mathbf{PQ} .

Question 3(b) Show that
$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & -\tan\frac{\theta}{2}\\ \tan\frac{\theta}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & \tan\frac{\theta}{2}\\ -\tan\frac{\theta}{2} & 1 \end{pmatrix}^{-1}$$

Solution.

$$R.H.S = \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{pmatrix} \begin{pmatrix} \cos^2\frac{\theta}{2} & -\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2} & \cos^2\frac{\theta}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} & -2\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\ 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} & -\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} \end{pmatrix} = L.H.S$$

Question 3(c) Verify the Cayley-Hamilton theorem for $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.

Solution. The characteristic equation for \mathbf{A} is $\begin{vmatrix} -\lambda & 1 \\ -2 & 3-\lambda \end{vmatrix} = 0 \Rightarrow -3\lambda + \lambda^2 + 2 = 0$ Thus according to the Cayley-Hamilton theorem $\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{I} = \mathbf{0}$. $\mathbf{A}^2 = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ -6 & 7 \end{pmatrix}$ $\begin{pmatrix} -2 & 3 \\ -6 & 7 \end{pmatrix} - 3 \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Thus the Cayley Hamilton theorem is verified for $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.