UPSC Civil Services Main 1993 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor B.S.A. College of Engg & Technology Mathura

Question 1(a) Show that the set $S = \{(1,0,0), (1,1,0), (1,1,1), (0,1,0)\}$ spans the vector space \mathbb{R}^3 but is not a basis set.

Solution. The vectors (1,0,0), (0,1,0), (1,1,1) are linearly independent, because $\alpha(1,0,0) + \beta(1,1,0) + \gamma(1,1,1) = \mathbf{0} \Rightarrow \alpha + \gamma = 0, \beta + \gamma = 0, \gamma = 0 \Rightarrow \alpha = \beta = \gamma = 0.$

Thus (1,0,0), (1,1,0), (1,1,1) is a basis of \mathbb{R}^3 , as $\dim_{\mathbb{R}} \mathbb{R}^3 = 3$.

Any set containing a basis spans the space, so S spans \mathbb{R}^3 , but it is not a basis because the four vectors are not linearly independent, in fact (1, 1, 0) = (1, 0, 0) + (0, 1, 0).

Question 1(b) Define rank and nullity of a linear transformation. If \mathcal{V} is a finite dimensional vector space and \mathbf{T} is a linear operator on \mathcal{V} such that rank $\mathbf{T}^2 = \operatorname{rank} \mathbf{T}$, then prove that the null space of \mathbf{T} is equal to the null space of \mathbf{T}^2 , and the intersection of the range space and null space of \mathbf{T} is the zero subspace of \mathcal{V} .

Solution. The dimension of the image space $\mathbf{T}(\mathcal{V})$ is called rank of \mathbf{T} . The dimension of the vector space kernel of $\mathbf{T} = \{\mathbf{v} \mid \mathbf{T}(\mathbf{v}) = \mathbf{0}\}$ is called the nullity of \mathbf{T} .

Now $\mathbf{v} \in \text{null space of } \mathbf{T} \Rightarrow \mathbf{T}(\mathbf{v}) = \mathbf{0} \Rightarrow \mathbf{T}^2(\mathbf{v}) = \mathbf{0} \Rightarrow \mathbf{v} \in \text{null space of } \mathbf{T}^2$. Thus null space of $\mathbf{T} \subseteq \text{null space of } \mathbf{T}^2$. But we are given that rank $\mathbf{T} = \text{rank } \mathbf{T}^2$, so therefore nullity of $\mathbf{T} = \text{nullity of } \mathbf{T}^2$, because of the nullity theorem — rank $\mathbf{T} + \text{nullity } \mathbf{T} = \dim \mathcal{V}$. Thus null space of $\mathbf{T} = \text{null space of } \mathbf{T}^2$.

Finally if $\mathbf{v} \in \text{range of } \mathbf{T}$, and $\mathbf{v} \in \text{null space of } \mathbf{T}$, then $\mathbf{v} = \mathbf{T}(\mathbf{w})$ for some $\mathbf{w} \in \mathcal{V}$. Now

$$\begin{split} \mathbf{T}^2(\mathbf{w}) &= \mathbf{T}(\mathbf{v}) \; \Rightarrow \; \mathbf{w} \in \; \mathrm{null \; space \; of \; } \mathbf{T}^2 \\ &\Rightarrow \; \mathbf{w} \in \; \mathrm{null \; space \; of \; } \mathbf{T} \\ &\Rightarrow \; \mathbf{0} &= \mathbf{T}(\mathbf{w}) = \mathbf{v} \end{split}$$

Thus range of $\mathbf{T} \cap$ null space of $\mathbf{T} = \{\mathbf{0}\}$.

Question 1(c) If the matrix of a linear operator \mathbf{T} on \mathbb{R}^2 relative to the standard basis $\{(1,0), (0,1)\}$ is $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, find the matrix of \mathbf{T} relative to the basis $\mathbf{B} = \{(1,1), (-1,1)\}$.

Solution. Let $\mathbf{v_1} = (1,1), \mathbf{v_2} = (-1,1)$. Then $\mathbf{T}(\mathbf{v_1}) = (11)\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = (2,2) = 2\mathbf{v_1}$. $\mathbf{T}(\mathbf{v_2}) = (-11)\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = (0,0) = \mathbf{0}$. So $(\mathbf{T}(\mathbf{v_1}), \mathbf{T}(\mathbf{v_2}) = (\mathbf{v_1}) \mathbf{v_2})\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, so the matrix of \mathbf{T} relative to the basis \mathbf{B} is $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.

Question 2(a) Prove that the inverse of
$$\begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{C} \end{pmatrix}$$
 is $\begin{pmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{C}^{-1}\mathbf{B}\mathbf{A}^{-1} & \mathbf{C}^{-1} \end{pmatrix}$ where \mathbf{A}, \mathbf{C} are nonsingular matrices. Hence find the inverse of $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$.

Solution.

$$\begin{pmatrix}
\mathbf{A} & \mathbf{0} \\
\mathbf{B} & \mathbf{C}
\end{pmatrix}
\begin{pmatrix}
\mathbf{A}^{-1} & \mathbf{0} \\
-\mathbf{C}^{-1}\mathbf{B}\mathbf{A}^{-1} & \mathbf{C}^{-1}
\end{pmatrix} = \begin{pmatrix}
\mathbf{I} & \mathbf{0} \\
\mathbf{B}\mathbf{A}^{-1} - \mathbf{B}\mathbf{A}^{-1} & \mathbf{I}
\end{pmatrix} = \text{Identity matrix.}$$

$$\begin{pmatrix}
\mathbf{A}^{-1} & \mathbf{0} \\
-\mathbf{C}^{-1}\mathbf{B}\mathbf{A}^{-1} & \mathbf{C}^{-1}
\end{pmatrix}
\begin{pmatrix}
\mathbf{A} & \mathbf{0} \\
\mathbf{B} & \mathbf{C}
\end{pmatrix} = \begin{pmatrix}
\mathbf{I} & \mathbf{0} \\
-\mathbf{C}^{-1}\mathbf{B} + \mathbf{C}^{-1}\mathbf{B} & \mathbf{I}
\end{pmatrix} = \text{Identity matrix, which shows}$$
the result.

Let $\mathbf{A} = \mathbf{C} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Then $\mathbf{A}^{-1} = \mathbf{C}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ and $\mathbf{C}^{-1}\mathbf{B}\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ Thus

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

Question 2(b) If A is an orthogonal matrix with the property that -1 is not an eigenvalue, then show that $A = (I - S)(I + S)^{-1}$ for some skew symmetric matrix S.

Solution. We want S skew symmetric such that A(I + S) = I - S i.e. A + AS = I - S or AS + S = I - A or (I + A)S = I - A. Let $S = (I + A)^{-1}(I - A)$, note that I + A is invertible because if |I + A| = 0, then -1 will be an eigenvalue of A.

Note that the two factors of S commute, because $(I+A)(I-A) = I-A^2 = (I-A)(I+A)$, so $(I-A)(I+A)^{-1} = (I+A)^{-1}(I-A)$.

Now

$$\begin{aligned} \mathbf{S}' &= (\mathbf{I} - \mathbf{A})'((\mathbf{I} + \mathbf{A})^{-1})' \\ &= (\mathbf{I} - \mathbf{A}')(\mathbf{I} + \mathbf{A}')^{-1} \\ &= (\mathbf{A}\mathbf{A}' - \mathbf{A}')(\mathbf{A}'\mathbf{A} + \mathbf{A}')^{-1} \\ &= (\mathbf{A} - \mathbf{I})\mathbf{A}'\mathbf{A}'^{-1}(\mathbf{A} + \mathbf{I})^{-1} \\ &= -(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1} \\ &= -(\mathbf{I} + \mathbf{A})^{-1}(\mathbf{I} - \mathbf{A}) \\ &= -\mathbf{S} \end{aligned}$$

Thus **S** is skew symmetric, so $\mathbf{A} = (\mathbf{I} - \mathbf{S})(\mathbf{I} + \mathbf{S})^{-1}$ where $\mathbf{S} = (\mathbf{I} + \mathbf{A})^{-1}(\mathbf{I} - \mathbf{A})$

Question 2(c) Show that any two eigenvectors corresponding to distinct eigenvalues of (i) Hermitian matrices (ii) unitary matrices are orthogonal.

Solution. We first prove that the eigenvalues of a Hermitian matrix, and therefore of a symmetric matrix, are real.

Let **H** be Hermitian, and λ be one of its eigenvalues. Let $\mathbf{x} \neq \mathbf{0}$ be an eigenvector corresponding to λ . Thus $\mathbf{H}\mathbf{x} = \lambda \mathbf{x}$, so $\overline{\mathbf{x}}'\mathbf{H}\mathbf{x} = \overline{\mathbf{x}}'\lambda\mathbf{x}$. But $\overline{(\overline{\mathbf{x}}'\mathbf{H}\mathbf{x})}' = (\mathbf{x}'\overline{\mathbf{H}}\overline{\mathbf{x}})' = \overline{\mathbf{x}}'\overline{\mathbf{H}}'\mathbf{x} = \overline{\mathbf{x}}'\mathbf{H}\mathbf{x}$, because $\overline{\mathbf{H}}' = \mathbf{H}$. Note that $(\overline{\mathbf{x}}'\mathbf{H}\mathbf{x})' = \overline{\mathbf{x}}'\mathbf{H}\mathbf{x}$, since it is a single element, therefore $\overline{\mathbf{x}}'\mathbf{H}\mathbf{x}$ is real. Similarly $\overline{\mathbf{x}}'\mathbf{x} \neq 0$ is real, so $\lambda = \frac{\overline{\mathbf{x}}'\mathbf{H}\mathbf{x}}{\overline{\mathbf{x}}'\mathbf{x}}$ is real.

 $\overline{\mathbf{x}}'\mathbf{H}\mathbf{x} \text{ is real. Similarly } \overline{\mathbf{x}}'\mathbf{x} \neq 0 \text{ is real, so } \lambda = \frac{\overline{\mathbf{x}}'\mathbf{H}\mathbf{x}}{\overline{\mathbf{x}}'\mathbf{x}} \text{ is real.}$ Let **H** be Hermitian, $\mathbf{H}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$, $\mathbf{H}\mathbf{x}_2 = \lambda_2\mathbf{x}_2$ with $\lambda_1 \neq \lambda_2$. Clearly $\overline{\mathbf{x}}_2'\mathbf{H}\mathbf{x}_1 = \lambda_1\overline{\mathbf{x}}_2'\mathbf{x}_1$, $\overline{\mathbf{x}}_1'\mathbf{H}\mathbf{x}_2 = \lambda_2\overline{\mathbf{x}}_1'\mathbf{x}_2$. But $(\overline{\mathbf{x}}_2'\mathbf{H}\mathbf{x}_1)' = \overline{\mathbf{x}}_1'\overline{\mathbf{H}}'\mathbf{x}_2 = \lambda_1\overline{\mathbf{x}}_1'\mathbf{x}_2$. So $\lambda_2\overline{\mathbf{x}}_1'\mathbf{x}_2 = \overline{\mathbf{x}}_1'\mathbf{H}\mathbf{x}_2 = \overline{\mathbf{x}}_1'\overline{\mathbf{H}}'\mathbf{x}_2 = \lambda_1\overline{\mathbf{x}}_1'\mathbf{x}_2$. Because $\overline{\mathbf{H}}' = \mathbf{H}$. Since $\lambda_1 \neq \lambda_2$, $\overline{\mathbf{x}}_1'\mathbf{x}_2 = 0$, so $\mathbf{x}_1, \mathbf{x}_2$ are orthogonal.

Let **U** be unitary, $\mathbf{U}\mathbf{x}_1 = \lambda_1\mathbf{x}_1, \mathbf{U}\mathbf{x}_2 = \lambda_2\mathbf{x}_2$, where λ_1, λ_2 are distinct eigenvalues of **U** with corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2$. Thus $\overline{\mathbf{x}}_2'\overline{\mathbf{U}}'\mathbf{U}\mathbf{x}_1 = \overline{\lambda}_2\overline{\mathbf{x}}_2'\lambda_1\mathbf{x}_1$. Since $\overline{\mathbf{U}}'\mathbf{U} = \mathbf{I}$, $\overline{\lambda}_2\overline{\mathbf{x}}_2'\lambda_1\mathbf{x}_1 = \overline{\mathbf{x}}_2'\mathbf{x}_1$, so $(1 - \overline{\lambda}_2\lambda_1)(\overline{\mathbf{x}}_2'\mathbf{x}_1) = 0$. But $1 - \overline{\lambda}_2\lambda_1 = \overline{\lambda}_2\lambda_2 - \overline{\lambda}_2\lambda_1 = \overline{\lambda}_2(\lambda_2 - \lambda_1) \neq 0^1$. Thus $\overline{\mathbf{x}}_2'\mathbf{x}_1 = 0$, so $\mathbf{x}_1, \mathbf{x}_2$ are orthogonal.

Question 3(a) A matrix **B** of order n is of the form $\lambda \mathbf{A}$, where λ is a scalar and **A** has 1 everywhere except the diagonal, which has μ . Find λ, μ so that **B** may be orthogonal.

Solution.
$$\mathbf{A} = \begin{pmatrix} \mu & 1 & \dots & 1 \\ 1 & \mu & \dots & 1 \\ \dots & \dots & \\ 1 & 1 & \dots & \mu \end{pmatrix}, \quad \mathbf{B} = \lambda \mathbf{A}. \text{ Thus}$$
$$\mathbf{B'B} = \begin{pmatrix} \lambda \mu & \lambda & \dots & \lambda \\ \lambda & \lambda \mu & \dots & \lambda \\ \dots & \dots & \dots \\ \lambda & \lambda & \dots & \lambda \mu \end{pmatrix} \begin{pmatrix} \lambda \mu & \lambda & \dots & \lambda \\ \lambda & \lambda \mu & \dots & \lambda \\ \dots & \dots & \dots \\ \lambda & \lambda & \dots & \lambda \mu \end{pmatrix} = \mathbf{BB'} = \mathbf{B}^2$$

¹We used here the fact that all eigenvalues of a unitary matrix have modulus 1. If $\mathbf{U}\mathbf{x} = \lambda \mathbf{x}$, then $\mathbf{\overline{x}}'\mathbf{\overline{U}}' = \overline{\lambda}\mathbf{\overline{x}}'$. Thus $\mathbf{\overline{x}}'\mathbf{\overline{U}}'\mathbf{U}\mathbf{x} = \lambda\overline{\lambda}\mathbf{\overline{x}}'\mathbf{x}$, so $\mathbf{\overline{x}}'\mathbf{x} = \lambda\overline{\lambda}\mathbf{\overline{x}}'\mathbf{x}$. Now $\mathbf{\overline{x}}'\mathbf{x} \neq 0$, so $\lambda\overline{\lambda} = 1$.

Clearly each diagonal element of **BB**' is $\lambda^2 \mu^2 + (n-1)\lambda^2$, and each nondiagonal element is $2\lambda^2 \mu + (n-2)\lambda^2$. Thus **B** will be orthogonal if $2\lambda^2 \mu + (n-2)\lambda^2 = 0$, $\lambda^2 \mu^2 + (n-1)\lambda^2 = 1$. Since $\lambda \neq 0$, $\mu = \frac{2-n}{2} = 1 - \frac{n}{2}$, and $\lambda^2 = \frac{1}{(1-\frac{n}{2})^2+n-1} = \frac{1}{1-n+\frac{n^2}{4}+n-1} = \frac{4}{n^2}$, thus $\lambda = \pm \frac{2}{n}$.

Question 3(b) Find the rank of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 & 6\\ 1 & 3 & -3 & -4\\ 5 & 3 & 3 & 11 \end{pmatrix}$$

by reducing it to its normal form.

Solution.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Operation $\mathbf{C_2} + \mathbf{C_1}, \mathbf{C_3} - 3\mathbf{C_1}, \mathbf{C_4} - 6\mathbf{C_1} \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & -6 & -10 \\ 5 & 8 & -12 & -19 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -3 & -6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 ${\rm Operation}\ R_2-R_1 \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -6 & -10 \\ 5 & 8 & -12 & -19 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -3 & -6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Operation $\mathbf{R_3} - 2\mathbf{R_2} \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -6 & -10 \\ 5 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -3 & -6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Interchanging C_3 and C_4 we get

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -10 & -6 \\ 5 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -6 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 $R_3 - 5R_1 \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -10 & -6 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & -2 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -6 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Operation $\frac{1}{4}\mathbf{R_2} \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -\frac{5}{2} & -\frac{3}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & 0 \\ -3 & -2 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -6 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Operation $\mathbf{C_3} + \frac{5}{2}\mathbf{C_2}, \mathbf{C_4} + \frac{3}{2}\mathbf{C_2} \Rightarrow$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & 0 \\ -3 & -2 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 1 & -\frac{7}{2} & -\frac{3}{2} \\ 0 & 1 & \frac{5}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Thus the normal form of **A** is $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ so rank A = 3. **P** = $\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & 0 \\ -3 & -2 & 1 \end{pmatrix}$ and

$$\mathbf{Q} = \begin{pmatrix} 1 & 1 & -\frac{7}{2} & -\frac{3}{2} \\ 0 & 1 & \frac{5}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } \mathbf{PAQ} \text{ is the normal form.}$$

Question 3(c) Determine the following form as definite, semidefinite or indefinite

$$2x_1^2 + 2x_2^2 + 3x_3^2 - 4x_2x_3 - 4x_3x_1 + 2x_1x_2$$

Solution. Completing the squares of the given form (say $Q(x_1, x_2, x_3)$):

$$Q(x_1, x_2, x_3) = 2(x_1 + \frac{1}{2}x_2 - x_3)^2 + \frac{3}{2}x_2^2 + x_3^2 - 2x_2x_3$$

= $2(x_1 + \frac{1}{2}x_2 - x_3)^2 + (x_3 - x_2)^2 + \frac{1}{2}x_2^2$

Thus Q can be written as the sum of 3 squares with positive coefficients, so it is positive definite.